Integral of 3x(y^2+4) dy
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫3x(y2+4)dy=3x∫(y2+4)dy
-
Integrate term-by-term:
-
The integral of yn is n+1yn+1 when n=−1:
∫y2dy=3y3
-
The integral of a constant is the constant times the variable of integration:
∫4dy=4y
The result is: 3y3+4y
So, the result is: 3x(3y3+4y)
-
Now simplify:
xy(y2+12)
-
Add the constant of integration:
xy(y2+12)+constant
The answer is:
xy(y2+12)+constant
The answer (Indefinite)
[src]
/
| / 3\
| / 2 \ | y |
| 3*x*\y + 4/ dy = C + 3*x*|4*y + --|
| \ 3 /
/
∫3x(y2+4)dy=C+3x(3y3+4y)
Use the examples entering the upper and lower limits of integration.