Mister Exam

Other calculators

Integral of tan(x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     / 2    \   
 |  tan\x  + 1/ dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \tan{\left(x^{2} + 1 \right)}\, dx$$
Integral(tan(x^2 + 1), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Don't know the steps in finding this integral.

    But the integral is

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                          /              
  /                      |               
 |                       |    / 2    \   
 |    / 2    \           | sin\x  + 1/   
 | tan\x  + 1/ dx = C +  | ----------- dx
 |                       |    / 2    \   
/                        | cos\x  + 1/   
                         |               
                        /                
$$\int \tan{\left(x^{2} + 1 \right)}\, dx = C + \int \frac{\sin{\left(x^{2} + 1 \right)}}{\cos{\left(x^{2} + 1 \right)}}\, dx$$
The answer [src]
  1               
  /               
 |                
 |     /     2\   
 |  tan\1 + x / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \tan{\left(x^{2} + 1 \right)}\, dx$$
=
=
  1               
  /               
 |                
 |     /     2\   
 |  tan\1 + x / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \tan{\left(x^{2} + 1 \right)}\, dx$$
Numerical answer [src]
1.1158721984137
1.1158721984137

    Use the examples entering the upper and lower limits of integration.