Mister Exam

Other calculators


tan(x^2+1)

Derivative of tan(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2    \
tan\x  + 1/
$$\tan{\left(x^{2} + 1 \right)}$$
tan(x^2 + 1)
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
    /       2/ 2    \\
2*x*\1 + tan \x  + 1//
$$2 x \left(\tan^{2}{\left(x^{2} + 1 \right)} + 1\right)$$
The second derivative [src]
  /       2/     2\      2 /       2/     2\\    /     2\\
2*\1 + tan \1 + x / + 4*x *\1 + tan \1 + x //*tan\1 + x //
$$2 \left(4 x^{2} \left(\tan^{2}{\left(x^{2} + 1 \right)} + 1\right) \tan{\left(x^{2} + 1 \right)} + \tan^{2}{\left(x^{2} + 1 \right)} + 1\right)$$
The third derivative [src]
    /       2/     2\\ /     /     2\      2 /       2/     2\\      2    2/     2\\
8*x*\1 + tan \1 + x //*\3*tan\1 + x / + 2*x *\1 + tan \1 + x // + 4*x *tan \1 + x //
$$8 x \left(\tan^{2}{\left(x^{2} + 1 \right)} + 1\right) \left(2 x^{2} \left(\tan^{2}{\left(x^{2} + 1 \right)} + 1\right) + 4 x^{2} \tan^{2}{\left(x^{2} + 1 \right)} + 3 \tan{\left(x^{2} + 1 \right)}\right)$$
The graph
Derivative of tan(x^2+1)