Mister Exam

Other calculators


sin^3(6x)

Integral of sin^3(6x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     3        
 |  sin (6*x) dx
 |              
/               
0               
01sin3(6x)dx\int\limits_{0}^{1} \sin^{3}{\left(6 x \right)}\, dx
Integral(sin(6*x)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin3(6x)=(1cos2(6x))sin(6x)\sin^{3}{\left(6 x \right)} = \left(1 - \cos^{2}{\left(6 x \right)}\right) \sin{\left(6 x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(6x)u = \cos{\left(6 x \right)}.

      Then let du=6sin(6x)dxdu = - 6 \sin{\left(6 x \right)} dx and substitute dudu:

      (u2616)du\int \left(\frac{u^{2}}{6} - \frac{1}{6}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          u26du=u2du6\int \frac{u^{2}}{6}\, du = \frac{\int u^{2}\, du}{6}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u318\frac{u^{3}}{18}

        1. The integral of a constant is the constant times the variable of integration:

          (16)du=u6\int \left(- \frac{1}{6}\right)\, du = - \frac{u}{6}

        The result is: u318u6\frac{u^{3}}{18} - \frac{u}{6}

      Now substitute uu back in:

      cos3(6x)18cos(6x)6\frac{\cos^{3}{\left(6 x \right)}}{18} - \frac{\cos{\left(6 x \right)}}{6}

    Method #2

    1. Rewrite the integrand:

      (1cos2(6x))sin(6x)=sin(6x)cos2(6x)+sin(6x)\left(1 - \cos^{2}{\left(6 x \right)}\right) \sin{\left(6 x \right)} = - \sin{\left(6 x \right)} \cos^{2}{\left(6 x \right)} + \sin{\left(6 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(6x)cos2(6x))dx=sin(6x)cos2(6x)dx\int \left(- \sin{\left(6 x \right)} \cos^{2}{\left(6 x \right)}\right)\, dx = - \int \sin{\left(6 x \right)} \cos^{2}{\left(6 x \right)}\, dx

        1. Let u=cos(6x)u = \cos{\left(6 x \right)}.

          Then let du=6sin(6x)dxdu = - 6 \sin{\left(6 x \right)} dx and substitute du6- \frac{du}{6}:

          u236du\int \frac{u^{2}}{36}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u26)du=u2du6\int \left(- \frac{u^{2}}{6}\right)\, du = - \frac{\int u^{2}\, du}{6}

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u318- \frac{u^{3}}{18}

          Now substitute uu back in:

          cos3(6x)18- \frac{\cos^{3}{\left(6 x \right)}}{18}

        So, the result is: cos3(6x)18\frac{\cos^{3}{\left(6 x \right)}}{18}

      1. Let u=6xu = 6 x.

        Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

        sin(u)36du\int \frac{\sin{\left(u \right)}}{36}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)6du=sin(u)du6\int \frac{\sin{\left(u \right)}}{6}\, du = \frac{\int \sin{\left(u \right)}\, du}{6}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)6- \frac{\cos{\left(u \right)}}{6}

        Now substitute uu back in:

        cos(6x)6- \frac{\cos{\left(6 x \right)}}{6}

      The result is: cos3(6x)18cos(6x)6\frac{\cos^{3}{\left(6 x \right)}}{18} - \frac{\cos{\left(6 x \right)}}{6}

    Method #3

    1. Rewrite the integrand:

      (1cos2(6x))sin(6x)=sin(6x)cos2(6x)+sin(6x)\left(1 - \cos^{2}{\left(6 x \right)}\right) \sin{\left(6 x \right)} = - \sin{\left(6 x \right)} \cos^{2}{\left(6 x \right)} + \sin{\left(6 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(6x)cos2(6x))dx=sin(6x)cos2(6x)dx\int \left(- \sin{\left(6 x \right)} \cos^{2}{\left(6 x \right)}\right)\, dx = - \int \sin{\left(6 x \right)} \cos^{2}{\left(6 x \right)}\, dx

        1. Let u=cos(6x)u = \cos{\left(6 x \right)}.

          Then let du=6sin(6x)dxdu = - 6 \sin{\left(6 x \right)} dx and substitute du6- \frac{du}{6}:

          u236du\int \frac{u^{2}}{36}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u26)du=u2du6\int \left(- \frac{u^{2}}{6}\right)\, du = - \frac{\int u^{2}\, du}{6}

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u318- \frac{u^{3}}{18}

          Now substitute uu back in:

          cos3(6x)18- \frac{\cos^{3}{\left(6 x \right)}}{18}

        So, the result is: cos3(6x)18\frac{\cos^{3}{\left(6 x \right)}}{18}

      1. Let u=6xu = 6 x.

        Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

        sin(u)36du\int \frac{\sin{\left(u \right)}}{36}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)6du=sin(u)du6\int \frac{\sin{\left(u \right)}}{6}\, du = \frac{\int \sin{\left(u \right)}\, du}{6}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)6- \frac{\cos{\left(u \right)}}{6}

        Now substitute uu back in:

        cos(6x)6- \frac{\cos{\left(6 x \right)}}{6}

      The result is: cos3(6x)18cos(6x)6\frac{\cos^{3}{\left(6 x \right)}}{18} - \frac{\cos{\left(6 x \right)}}{6}

  3. Now simplify:

    (cos2(6x)3)cos(6x)18\frac{\left(\cos^{2}{\left(6 x \right)} - 3\right) \cos{\left(6 x \right)}}{18}

  4. Add the constant of integration:

    (cos2(6x)3)cos(6x)18+constant\frac{\left(\cos^{2}{\left(6 x \right)} - 3\right) \cos{\left(6 x \right)}}{18}+ \mathrm{constant}


The answer is:

(cos2(6x)3)cos(6x)18+constant\frac{\left(\cos^{2}{\left(6 x \right)} - 3\right) \cos{\left(6 x \right)}}{18}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                  3     
 |    3               cos(6*x)   cos (6*x)
 | sin (6*x) dx = C - -------- + ---------
 |                       6           18   
/                                         
cos3(6x)3cos(6x)6{{{{\cos ^3\left(6\,x\right)}\over{3}}-\cos \left(6\,x\right) }\over{6}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
                3   
1   cos(6)   cos (6)
- - ------ + -------
9     6         18  
cos363cos618+19{{\cos ^36-3\,\cos 6}\over{18}}+{{1}\over{9}}
=
=
                3   
1   cos(6)   cos (6)
- - ------ + -------
9     6         18  
cos(6)6+cos3(6)18+19- \frac{\cos{\left(6 \right)}}{6} + \frac{\cos^{3}{\left(6 \right)}}{18} + \frac{1}{9}
Numerical answer [src]
0.000260890672094249
0.000260890672094249
The graph
Integral of sin^3(6x) dx

    Use the examples entering the upper and lower limits of integration.