Integral of sin^3(6x) dx
The solution
Detail solution
-
Rewrite the integrand:
sin3(6x)=(1−cos2(6x))sin(6x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(6x).
Then let du=−6sin(6x)dx and substitute du:
∫(6u2−61)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫6u2du=6∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 18u3
-
The integral of a constant is the constant times the variable of integration:
∫(−61)du=−6u
The result is: 18u3−6u
Now substitute u back in:
18cos3(6x)−6cos(6x)
Method #2
-
Rewrite the integrand:
(1−cos2(6x))sin(6x)=−sin(6x)cos2(6x)+sin(6x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(6x)cos2(6x))dx=−∫sin(6x)cos2(6x)dx
-
Let u=cos(6x).
Then let du=−6sin(6x)dx and substitute −6du:
∫36u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−6u2)du=−6∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −18u3
Now substitute u back in:
−18cos3(6x)
So, the result is: 18cos3(6x)
-
Let u=6x.
Then let du=6dx and substitute 6du:
∫36sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫6sin(u)du=6∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −6cos(u)
Now substitute u back in:
−6cos(6x)
The result is: 18cos3(6x)−6cos(6x)
Method #3
-
Rewrite the integrand:
(1−cos2(6x))sin(6x)=−sin(6x)cos2(6x)+sin(6x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(6x)cos2(6x))dx=−∫sin(6x)cos2(6x)dx
-
Let u=cos(6x).
Then let du=−6sin(6x)dx and substitute −6du:
∫36u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−6u2)du=−6∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −18u3
Now substitute u back in:
−18cos3(6x)
So, the result is: 18cos3(6x)
-
Let u=6x.
Then let du=6dx and substitute 6du:
∫36sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫6sin(u)du=6∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −6cos(u)
Now substitute u back in:
−6cos(6x)
The result is: 18cos3(6x)−6cos(6x)
-
Now simplify:
18(cos2(6x)−3)cos(6x)
-
Add the constant of integration:
18(cos2(6x)−3)cos(6x)+constant
The answer is:
18(cos2(6x)−3)cos(6x)+constant
The answer (Indefinite)
[src]
/
| 3
| 3 cos(6*x) cos (6*x)
| sin (6*x) dx = C - -------- + ---------
| 6 18
/
63cos3(6x)−cos(6x)
The graph
3
1 cos(6) cos (6)
- - ------ + -------
9 6 18
18cos36−3cos6+91
=
3
1 cos(6) cos (6)
- - ------ + -------
9 6 18
−6cos(6)+18cos3(6)+91
Use the examples entering the upper and lower limits of integration.