Mister Exam

Other calculators

Integral of sqrt(2+2*sin(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   0                    
   /                    
  |                     
  |    ______________   
  |  \/ 2 + 2*sin(x)  dx
  |                     
 /                      
-pi                     
----                    
 2                      
π202sin(x)+2dx\int\limits_{- \frac{\pi}{2}}^{0} \sqrt{2 \sin{\left(x \right)} + 2}\, dx
Integral(sqrt(2 + 2*sin(x)), (x, -pi/2, 0))
Detail solution
  1. Rewrite the integrand:

    2sin(x)+2=2sin(x)+1\sqrt{2 \sin{\left(x \right)} + 2} = \sqrt{2} \sqrt{\sin{\left(x \right)} + 1}

  2. The integral of a constant times a function is the constant times the integral of the function:

    2sin(x)+1dx=2sin(x)+1dx\int \sqrt{2} \sqrt{\sin{\left(x \right)} + 1}\, dx = \sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      sin(x)+1dx\int \sqrt{\sin{\left(x \right)} + 1}\, dx

    So, the result is: 2sin(x)+1dx\sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx

  3. Add the constant of integration:

    2sin(x)+1dx+constant\sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx+ \mathrm{constant}


The answer is:

2sin(x)+1dx+constant\sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  /                 
 |                                  |                  
 |   ______________            ___  |   ____________   
 | \/ 2 + 2*sin(x)  dx = C + \/ 2 * | \/ 1 + sin(x)  dx
 |                                  |                  
/                                  /                   
2sin(x)+2dx=C+2sin(x)+1dx\int \sqrt{2 \sin{\left(x \right)} + 2}\, dx = C + \sqrt{2} \int \sqrt{\sin{\left(x \right)} + 1}\, dx
Numerical answer [src]
1.17157287525381
1.17157287525381

    Use the examples entering the upper and lower limits of integration.