Integral of sqrt(2-2sinx) dx
The solution
Detail solution
-
Rewrite the integrand:
2−2sin(x)=21−sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫21−sin(x)dx=2∫1−sin(x)dx
-
Don't know the steps in finding this integral.
But the integral is
∫1−sin(x)dx
So, the result is: 2∫1−sin(x)dx
-
Add the constant of integration:
2∫1−sin(x)dx+constant
The answer is:
2∫1−sin(x)dx+constant
The answer (Indefinite)
[src]
/ /
| |
| ______________ ___ | ____________
| \/ 2 - 2*sin(x) dx = C + \/ 2 * | \/ 1 - sin(x) dx
| |
/ /
∫2−2sinxdx
pi
--
6
/
|
___ | ____________
\/ 2 * | \/ 1 - sin(x) dx
|
/
0
20∫6π−sin(x)+1dx
=
pi
--
6
/
|
___ | ____________
\/ 2 * | \/ 1 - sin(x) dx
|
/
0
20∫6π−sin(x)+1dx
Use the examples entering the upper and lower limits of integration.