Mister Exam

Other calculators

Integral of sqrt(2-2sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                    
 --                    
 6                     
  /                    
 |                     
 |    ______________   
 |  \/ 2 - 2*sin(x)  dx
 |                     
/                      
0                      
0π62sin(x)+2dx\int\limits_{0}^{\frac{\pi}{6}} \sqrt{- 2 \sin{\left(x \right)} + 2}\, dx
Detail solution
  1. Rewrite the integrand:

    22sin(x)=21sin(x)\sqrt{2 - 2 \sin{\left(x \right)}} = \sqrt{2} \sqrt{1 - \sin{\left(x \right)}}

  2. The integral of a constant times a function is the constant times the integral of the function:

    21sin(x)dx=21sin(x)dx\int \sqrt{2} \sqrt{1 - \sin{\left(x \right)}}\, dx = \sqrt{2} \int \sqrt{1 - \sin{\left(x \right)}}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      1sin(x)dx\int \sqrt{1 - \sin{\left(x \right)}}\, dx

    So, the result is: 21sin(x)dx\sqrt{2} \int \sqrt{1 - \sin{\left(x \right)}}\, dx

  3. Add the constant of integration:

    21sin(x)dx+constant\sqrt{2} \int \sqrt{1 - \sin{\left(x \right)}}\, dx+ \mathrm{constant}


The answer is:

21sin(x)dx+constant\sqrt{2} \int \sqrt{1 - \sin{\left(x \right)}}\, dx+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  /                 
 |                                  |                  
 |   ______________            ___  |   ____________   
 | \/ 2 - 2*sin(x)  dx = C + \/ 2 * | \/ 1 - sin(x)  dx
 |                                  |                  
/                                  /                   
22sinx  dx\int {\sqrt{2-2\,\sin x}}{\;dx}
The answer [src]
       pi                  
       --                  
       6                   
        /                  
       |                   
  ___  |    ____________   
\/ 2 * |  \/ 1 - sin(x)  dx
       |                   
      /                    
      0                    
20π6sin(x)+1dx\sqrt{2} \int\limits_{0}^{\frac{\pi}{6}} \sqrt{- \sin{\left(x \right)} + 1}\, dx
=
=
       pi                  
       --                  
       6                   
        /                  
       |                   
  ___  |    ____________   
\/ 2 * |  \/ 1 - sin(x)  dx
       |                   
      /                    
      0                    
20π6sin(x)+1dx\sqrt{2} \int\limits_{0}^{\frac{\pi}{6}} \sqrt{- \sin{\left(x \right)} + 1}\, dx
Numerical answer [src]
0.635674490391565
0.635674490391565

    Use the examples entering the upper and lower limits of integration.