Mister Exam

Other calculators

Integral of sqrt(2-2sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                    
 --                    
 6                     
  /                    
 |                     
 |    ______________   
 |  \/ 2 - 2*sin(x)  dx
 |                     
/                      
0                      
$$\int\limits_{0}^{\frac{\pi}{6}} \sqrt{- 2 \sin{\left(x \right)} + 2}\, dx$$
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  /                 
 |                                  |                  
 |   ______________            ___  |   ____________   
 | \/ 2 - 2*sin(x)  dx = C + \/ 2 * | \/ 1 - sin(x)  dx
 |                                  |                  
/                                  /                   
$$\int {\sqrt{2-2\,\sin x}}{\;dx}$$
The answer [src]
       pi                  
       --                  
       6                   
        /                  
       |                   
  ___  |    ____________   
\/ 2 * |  \/ 1 - sin(x)  dx
       |                   
      /                    
      0                    
$$\sqrt{2} \int\limits_{0}^{\frac{\pi}{6}} \sqrt{- \sin{\left(x \right)} + 1}\, dx$$
=
=
       pi                  
       --                  
       6                   
        /                  
       |                   
  ___  |    ____________   
\/ 2 * |  \/ 1 - sin(x)  dx
       |                   
      /                    
      0                    
$$\sqrt{2} \int\limits_{0}^{\frac{\pi}{6}} \sqrt{- \sin{\left(x \right)} + 1}\, dx$$
Numerical answer [src]
0.635674490391565
0.635674490391565

    Use the examples entering the upper and lower limits of integration.