Integral of sqrt2-2sin(x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin(x))dx=−2∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: 2cos(x)
-
The integral of a constant is the constant times the variable of integration:
∫2dx=2x
The result is: 2x+2cos(x)
-
Add the constant of integration:
2x+2cos(x)+constant
The answer is:
2x+2cos(x)+constant
The answer (Indefinite)
[src]
/
|
| / ___ \ ___
| \\/ 2 - 2*sin(x)/ dx = C + 2*cos(x) + x*\/ 2
|
/
∫(−2sin(x)+2)dx=C+2x+2cos(x)
The graph
___
pi*\/ 2
-1 + --------
3
−1+32π
=
___
pi*\/ 2
-1 + --------
3
−1+32π
Use the examples entering the upper and lower limits of integration.