Integral of 4*sqrt(2-2sin(x)) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫42−2sin(x)dx=4∫2−2sin(x)dx
-
Rewrite the integrand:
2−2sin(x)=21−sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫21−sin(x)dx=2∫1−sin(x)dx
-
Don't know the steps in finding this integral.
But the integral is
∫1−sin(x)dx
So, the result is: 2∫1−sin(x)dx
So, the result is: 42∫1−sin(x)dx
-
Add the constant of integration:
42∫1−sin(x)dx+constant
The answer is:
42∫1−sin(x)dx+constant
The answer (Indefinite)
[src]
/ /
| |
| ______________ ___ | ____________
| 4*\/ 2 - 2*sin(x) dx = C + 4*\/ 2 * | \/ 1 - sin(x) dx
| |
/ /
∫42−2sin(x)dx=C+42∫1−sin(x)dx
Use the examples entering the upper and lower limits of integration.