Mister Exam

Other calculators

Integral of sqrt(1+x)/sqrt(1-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |    _______   
 |  \/ 1 + x    
 |  --------- dx
 |    _______   
 |  \/ 1 - x    
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{\sqrt{x + 1}}{\sqrt{1 - x}}\, dx$$
Integral(sqrt(1 + x)/sqrt(1 - x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                              
 |                                                                                               
 |   _______            //    _______   _______       /  ___   _______\                         \
 | \/ 1 + x             ||  \/ 1 + x *\/ 1 - x        |\/ 2 *\/ 1 + x |                         |
 | --------- dx = C + 2*|<- ------------------- + asin|---------------|  for And(x >= -1, x < 1)|
 |   _______            ||           2                \       2       /                         |
 | \/ 1 - x             \\                                                                      /
 |                                                                                               
/                                                                                                
$$\int \frac{\sqrt{x + 1}}{\sqrt{1 - x}}\, dx = C + 2 \left(\begin{cases} - \frac{\sqrt{1 - x} \sqrt{x + 1}}{2} + \operatorname{asin}{\left(\frac{\sqrt{2} \sqrt{x + 1}}{2} \right)} & \text{for}\: x \geq -1 \wedge x < 1 \end{cases}\right)$$
The graph
Numerical answer [src]
2.57079632604468
2.57079632604468

    Use the examples entering the upper and lower limits of integration.