Integral of xexp(-x^2) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=e−x2.
Then let du=−2xe−x2dx and substitute −2du:
∫41du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−21)du=−2∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: −2u
Now substitute u back in:
−2e−x2
Method #2
-
Let u=−x2.
Then let du=−2xdx and substitute −2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2eu)du=−2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−x2
-
Add the constant of integration:
−2e−x2+constant
The answer is:
−2e−x2+constant
The answer (Indefinite)
[src]
/
| 2
| 2 -x
| -x e
| x*e dx = C - ----
| 2
/
−2e−x2
The graph
21−2e−1
=
−2e1+21
Use the examples entering the upper and lower limits of integration.