Mister Exam

Other calculators


xexp(-x^2)

Integral of xexp(-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |       2   
 |     -x    
 |  x*e    dx
 |           
/            
0            
01xex2dx\int\limits_{0}^{1} x e^{- x^{2}}\, dx
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=ex2u = e^{- x^{2}}.

      Then let du=2xex2dxdu = - 2 x e^{- x^{2}} dx and substitute du2- \frac{du}{2}:

      14du\int \frac{1}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12)du=1du2\int \left(- \frac{1}{2}\right)\, du = - \frac{\int 1\, du}{2}

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: u2- \frac{u}{2}

      Now substitute uu back in:

      ex22- \frac{e^{- x^{2}}}{2}

    Method #2

    1. Let u=x2u = - x^{2}.

      Then let du=2xdxdu = - 2 x dx and substitute du2- \frac{du}{2}:

      eu4du\int \frac{e^{u}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (eu2)du=eudu2\int \left(- \frac{e^{u}}{2}\right)\, du = - \frac{\int e^{u}\, du}{2}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2- \frac{e^{u}}{2}

      Now substitute uu back in:

      ex22- \frac{e^{- x^{2}}}{2}

  2. Add the constant of integration:

    ex22+constant- \frac{e^{- x^{2}}}{2}+ \mathrm{constant}


The answer is:

ex22+constant- \frac{e^{- x^{2}}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                    2
 |      2           -x 
 |    -x           e   
 | x*e    dx = C - ----
 |                  2  
/                      
ex22-{{e^ {- x^2 }}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
     -1
1   e  
- - ---
2    2 
12e12{{1}\over{2}}-{{e^ {- 1 }}\over{2}}
=
=
     -1
1   e  
- - ---
2    2 
12e+12- \frac{1}{2 e} + \frac{1}{2}
Numerical answer [src]
0.316060279414279
0.316060279414279
The graph
Integral of xexp(-x^2) dx

    Use the examples entering the upper and lower limits of integration.