Mister Exam

You entered:

sqrt(1+x)/sqrt(1-x)

What you mean?

Derivative of sqrt(1+x)/sqrt(1-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _______
\/ 1 + x 
---------
  _______
\/ 1 - x 
x+11x\frac{\sqrt{x + 1}}{\sqrt{1 - x}}
  /  _______\
d |\/ 1 + x |
--|---------|
dx|  _______|
  \\/ 1 - x /
ddxx+11x\frac{d}{d x} \frac{\sqrt{x + 1}}{\sqrt{1 - x}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x+1f{\left(x \right)} = \sqrt{x + 1} and g(x)=1xg{\left(x \right)} = \sqrt{1 - x}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x+1u = x + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

      1. Differentiate x+1x + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result of the chain rule is:

      12x+1\frac{1}{2 \sqrt{x + 1}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=1xu = 1 - x.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(1x)\frac{d}{d x} \left(1 - x\right):

      1. Differentiate 1x1 - x term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 1-1

        The result is: 1-1

      The result of the chain rule is:

      121x- \frac{1}{2 \sqrt{1 - x}}

    Now plug in to the quotient rule:

    1x2x+1+x+121x1x\frac{\frac{\sqrt{1 - x}}{2 \sqrt{x + 1}} + \frac{\sqrt{x + 1}}{2 \sqrt{1 - x}}}{1 - x}

  2. Now simplify:

    1(1x)32x+1\frac{1}{\left(1 - x\right)^{\frac{3}{2}} \sqrt{x + 1}}


The answer is:

1(1x)32x+1\frac{1}{\left(1 - x\right)^{\frac{3}{2}} \sqrt{x + 1}}

The graph
02468-8-6-4-2-1010050
The first derivative [src]
   _______                          
 \/ 1 + x                1          
------------ + ---------------------
         3/2       _______   _______
2*(1 - x)      2*\/ 1 + x *\/ 1 - x 
121xx+1+x+12(1x)32\frac{1}{2 \sqrt{1 - x} \sqrt{x + 1}} + \frac{\sqrt{x + 1}}{2 \left(1 - x\right)^{\frac{3}{2}}}
The second derivative [src]
                                       _______
      1                2           3*\/ 1 + x 
- ---------- + ----------------- + -----------
         3/2     _______                    2 
  (1 + x)      \/ 1 + x *(1 - x)     (1 - x)  
----------------------------------------------
                     _______                  
                 4*\/ 1 - x                   
1(x+1)32+2(1x)x+1+3x+1(1x)241x\frac{- \frac{1}{\left(x + 1\right)^{\frac{3}{2}}} + \frac{2}{\left(1 - x\right) \sqrt{x + 1}} + \frac{3 \sqrt{x + 1}}{\left(1 - x\right)^{2}}}{4 \sqrt{1 - x}}
The third derivative [src]
  /                                                           _______\
  |    1                1                    3            5*\/ 1 + x |
3*|---------- - ------------------ + ------------------ + -----------|
  |       5/2          3/2             _______        2            3 |
  \(1 + x)      (1 + x)   *(1 - x)   \/ 1 + x *(1 - x)      (1 - x)  /
----------------------------------------------------------------------
                                 _______                              
                             8*\/ 1 - x                               
3(1(x+1)521(1x)(x+1)32+3(1x)2x+1+5x+1(1x)3)81x\frac{3 \left(\frac{1}{\left(x + 1\right)^{\frac{5}{2}}} - \frac{1}{\left(1 - x\right) \left(x + 1\right)^{\frac{3}{2}}} + \frac{3}{\left(1 - x\right)^{2} \sqrt{x + 1}} + \frac{5 \sqrt{x + 1}}{\left(1 - x\right)^{3}}\right)}{8 \sqrt{1 - x}}
The graph
Derivative of sqrt(1+x)/sqrt(1-x)