Integral of sqrt(4-y) dy
The solution
Detail solution
-
Let u=4−y.
Then let du=−dy and substitute −du:
∫(−u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: −32u23
Now substitute u back in:
−32(4−y)23
-
Add the constant of integration:
−32(4−y)23+constant
The answer is:
−32(4−y)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _______ 2*(4 - y)
| \/ 4 - y dy = C - ------------
| 3
/
∫4−ydy=C−32(4−y)23
The graph
Use the examples entering the upper and lower limits of integration.