Mister Exam

Integral of sqrt(4-y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4             
  /             
 |              
 |    _______   
 |  \/ 4 - y  dy
 |              
/               
0               
$$\int\limits_{0}^{4} \sqrt{4 - y}\, dy$$
Integral(sqrt(4 - y), (y, 0, 4))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                             3/2
 |   _______          2*(4 - y)   
 | \/ 4 - y  dy = C - ------------
 |                         3      
/                                 
$$\int \sqrt{4 - y}\, dy = C - \frac{2 \left(4 - y\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
16/3
$$\frac{16}{3}$$
=
=
16/3
$$\frac{16}{3}$$
16/3
Numerical answer [src]
5.33333333333333
5.33333333333333

    Use the examples entering the upper and lower limits of integration.