Mister Exam

Other calculators

Integral of p/(1-p^2) dp

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    p      
 |  ------ dp
 |       2   
 |  1 - p    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{p}{- p^{2} + 1}\, dp$$
Detail solution
We have the integral:
  /           
 |            
 |     p      
 | 1*------ dp
 |        2   
 |   1 - p    
 |            
/             
Rewrite the integrand
             -1*2*p + 0   
         - -------------- 
              2           
  p        - p  + 0*p + 1 
------ = -----------------
     2           2        
1 - p                     
or
  /             
 |              
 |     p        
 | 1*------ dp  
 |        2    =
 |   1 - p      
 |              
/               
  
   /                  
  |                   
  |   -1*2*p + 0      
- | -------------- dp 
  |    2              
  | - p  + 0*p + 1    
  |                   
 /                    
----------------------
          2           
In the integral
   /                  
  |                   
  |   -1*2*p + 0      
- | -------------- dp 
  |    2              
  | - p  + 0*p + 1    
  |                   
 /                    
----------------------
          2           
do replacement
      2
u = -p 
then
the integral =
   /                        
  |                         
  |   1                     
- | ----- du                
  | 1 + u                   
  |                         
 /              -log(1 + u) 
------------- = ------------
      2              2      
do backward replacement
   /                                   
  |                                    
  |   -1*2*p + 0                       
- | -------------- dp                  
  |    2                               
  | - p  + 0*p + 1                     
  |                          /      2\ 
 /                       -log\-1 + p / 
---------------------- = --------------
          2                    2       
Solution is:
       /      2\
    log\-1 + p /
C - ------------
         2      
The answer (Indefinite) [src]
  /                           
 |                    /     2\
 |   p             log\1 - p /
 | ------ dp = C - -----------
 |      2               2     
 | 1 - p                      
 |                            
/                             
$$-{{\log \left(1-p^2\right)}\over{2}}$$
The answer [src]
     pi*I
oo + ----
      2  
$${\it \%a}$$
=
=
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
Numerical answer [src]
21.6989048028269
21.6989048028269

    Use the examples entering the upper and lower limits of integration.