Mister Exam

Integral of 5cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  pi            
  --            
  6             
   /            
  |             
  |  5*cos(x) dx
  |             
 /              
-pi             
----            
 6              
π6π65cos(x)dx\int\limits_{- \frac{\pi}{6}}^{\frac{\pi}{6}} 5 \cos{\left(x \right)}\, dx
Integral(5*cos(x), (x, -pi/6, pi/6))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    5cos(x)dx=5cos(x)dx\int 5 \cos{\left(x \right)}\, dx = 5 \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 5sin(x)5 \sin{\left(x \right)}

  2. Add the constant of integration:

    5sin(x)+constant5 \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

5sin(x)+constant5 \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 | 5*cos(x) dx = C + 5*sin(x)
 |                           
/                            
5sinx5\,\sin x
The graph
-0.50-0.40-0.30-0.20-0.100.000.100.200.300.400.50-1010
The answer [src]
5
10sin(π6)10\,\sin \left({{\pi}\over{6}}\right)
=
=
5
55
Numerical answer [src]
5.0
5.0
The graph
Integral of 5cosx dx

    Use the examples entering the upper and lower limits of integration.