2 / | | ________ | / 2 | 2*\/ 4 - y dy | / 0
Integral(2*sqrt(4 - y^2), (y, 0, 2))
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=2*sin(_theta), rewritten=4*cos(_theta)**2, substep=ConstantTimesRule(constant=4, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=4*cos(_theta)**2, symbol=_theta), restriction=(y > -2) & (y < 2), context=sqrt(4 - y**2), symbol=y)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | ________ // ________ \ | / 2 || / 2 | | 2*\/ 4 - y dy = C + 2*|< /y\ y*\/ 4 - y | | ||2*asin|-| + ------------- for And(y > -2, y < 2)| / \\ \2/ 2 /
Use the examples entering the upper and lower limits of integration.