Mister Exam

Integral of sqrt(5-4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 5 - 4*x  dx
 |                
/                 
-10               
$$\int\limits_{-10}^{1} \sqrt{5 - 4 x}\, dx$$
Integral(sqrt(5 - 4*x), (x, -10, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (5 - 4*x)   
 | \/ 5 - 4*x  dx = C - ------------
 |                           6      
/                                   
$$\int \sqrt{5 - 4 x}\, dx = C - \frac{\left(5 - 4 x\right)^{\frac{3}{2}}}{6}$$
The graph
The answer [src]
           ___
  1   45*\/ 5 
- - + --------
  6      2    
$$- \frac{1}{6} + \frac{45 \sqrt{5}}{2}$$
=
=
           ___
  1   45*\/ 5 
- - + --------
  6      2    
$$- \frac{1}{6} + \frac{45 \sqrt{5}}{2}$$
-1/6 + 45*sqrt(5)/2
Numerical answer [src]
50.1448628270786
50.1448628270786

    Use the examples entering the upper and lower limits of integration.