Mister Exam

Other calculators

Integral of x/sqrt(5-4*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |    _________   
 |  \/ 5 - 4*x    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{x}{\sqrt{5 - 4 x}}\, dx$$
Integral(x/sqrt(5 - 4*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                          _________            3/2
 |      x               5*\/ 5 - 4*x    (5 - 4*x)   
 | ----------- dx = C - ------------- + ------------
 |   _________                8              24     
 | \/ 5 - 4*x                                       
 |                                                  
/                                                   
$$\int \frac{x}{\sqrt{5 - 4 x}}\, dx = C + \frac{\left(5 - 4 x\right)^{\frac{3}{2}}}{24} - \frac{5 \sqrt{5 - 4 x}}{8}$$
The graph
The answer [src]
           ___
  7    5*\/ 5 
- -- + -------
  12      12  
$$- \frac{7}{12} + \frac{5 \sqrt{5}}{12}$$
=
=
           ___
  7    5*\/ 5 
- -- + -------
  12      12  
$$- \frac{7}{12} + \frac{5 \sqrt{5}}{12}$$
-7/12 + 5*sqrt(5)/12
Numerical answer [src]
0.348361657291579
0.348361657291579

    Use the examples entering the upper and lower limits of integration.