Mister Exam

Other calculators


1/(sqrt(5-4x-x^2))

Integral of 1/(sqrt(5-4x-x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |            1           
 |  1*----------------- dx
 |       ______________   
 |      /            2    
 |    \/  5 - 4*x - x     
 |                        
/                         
0                         
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{- x^{2} - 4 x + 5}}\, dx$$
Integral(1/sqrt(5 - 4*x - x^2), (x, 0, 1))
The answer (Indefinite) [src]
$$-\arcsin \left({{-2\,x-4}\over{6}}\right)$$
The graph
The answer [src]
pi            
-- - asin(2/3)
2             
$${{\pi}\over{2}}-\arcsin \left({{2}\over{3}}\right)$$
=
=
pi            
-- - asin(2/3)
2             
$$- \operatorname{asin}{\left(\frac{2}{3} \right)} + \frac{\pi}{2}$$
Numerical answer [src]
0.841068670351325
0.841068670351325
The graph
Integral of 1/(sqrt(5-4x-x^2)) dx

    Use the examples entering the upper and lower limits of integration.