Mister Exam

Other calculators

You entered:

sqrt(arcsin(2x)/(1-4x^2))

What you mean?

Integral of sqrt(arcsin(2x)/(1-4x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |       ___________   
 |      / asin(2*x)    
 |     /  ---------  dx
 |    /           2    
 |  \/     1 - 4*x     
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \sqrt{\frac{\operatorname{asin}{\left(2 x \right)}}{- 4 x^{2} + 1}}\, dx$$
Integral(sqrt(asin(2*x)/(1 - 4*x^2)), (x, 0, 1))
The answer (Indefinite) [src]
$${\it \%a}$$
The answer [src]
  1                    
  /                    
 |                     
 |       ___________   
 |      / asin(2*x)    
 |     /  ---------  dx
 |    /           2    
 |  \/     1 - 4*x     
 |                     
/                      
0                      
$${\it \%a}$$
=
=
  1                    
  /                    
 |                     
 |       ___________   
 |      / asin(2*x)    
 |     /  ---------  dx
 |    /           2    
 |  \/     1 - 4*x     
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \sqrt{\frac{\operatorname{asin}{\left(2 x \right)}}{- 4 x^{2} + 1}}\, dx$$

    Use the examples entering the upper and lower limits of integration.