Mister Exam

Other calculators


cos^5x*sin^3x

Integral of cos^5x*sin^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     5       3      
 |  cos (x)*sin (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin^{3}{\left(x \right)} \cos^{5}{\left(x \right)}\, dx$$
Integral(cos(x)^5*sin(x)^3, (x, 0, 1))
The graph
The answer [src]
        6         8   
1    cos (1)   cos (1)
-- - ------- + -------
24      6         8   
$${{3\,\sin ^81-8\,\sin ^61+6\,\sin ^41}\over{24}}$$
=
=
        6         8   
1    cos (1)   cos (1)
-- - ------- + -------
24      6         8   
$$- \frac{\cos^{6}{\left(1 \right)}}{6} + \frac{\cos^{8}{\left(1 \right)}}{8} + \frac{1}{24}$$
Numerical answer [src]
0.0384281112869579
0.0384281112869579
The graph
Integral of cos^5x*sin^3x dx

    Use the examples entering the upper and lower limits of integration.