1 / | | / 2 \ | cos\3*x + 4/ dx | / 0
Integral(cos(3*x^2 + 4), (x, 0, 1))
FresnelCRule(a=3, b=0, c=4, context=cos(3*x**2 + 4), symbol=x)
Add the constant of integration:
The answer is:
/ / ___\ / ___\ \ ___ ____ | |x*\/ 6 | |x*\/ 6 | | / \/ 6 *\/ pi *|cos(4)*C|-------| - S|-------|*sin(4)| | | | ____| | ____| | | / 2 \ \ \ \/ pi / \ \/ pi / / | cos\3*x + 4/ dx = C + ---------------------------------------------------- | 6 /
/ / ___ \ / ___ \ \ ___ ____ | |\/ 6 | |\/ 6 | | \/ 6 *\/ pi *|cos(4)*C|------| - S|------|*sin(4)| | | ____| | ____| | \ \\/ pi / \\/ pi / / -------------------------------------------------- 6
=
/ / ___ \ / ___ \ \ ___ ____ | |\/ 6 | |\/ 6 | | \/ 6 *\/ pi *|cos(4)*C|------| - S|------|*sin(4)| | | ____| | ____| | \ \\/ pi / \\/ pi / / -------------------------------------------------- 6
sqrt(6)*sqrt(pi)*(cos(4)*fresnelc(sqrt(6)/sqrt(pi)) - fresnels(sqrt(6)/sqrt(pi))*sin(4))/6
Use the examples entering the upper and lower limits of integration.