1 / | | / 2 \ | cos\3*x + 4/ dx | / 0
Integral(cos(3*x^2 + 4), (x, 0, 1))
FresnelCRule(a=3, b=0, c=4, context=cos(3*x**2 + 4), symbol=x)
Add the constant of integration:
The answer is:
/ / ___\ / ___\ \
___ ____ | |x*\/ 6 | |x*\/ 6 | |
/ \/ 6 *\/ pi *|cos(4)*C|-------| - S|-------|*sin(4)|
| | | ____| | ____| |
| / 2 \ \ \ \/ pi / \ \/ pi / /
| cos\3*x + 4/ dx = C + ----------------------------------------------------
| 6
/
/ / ___ \ / ___ \ \
___ ____ | |\/ 6 | |\/ 6 | |
\/ 6 *\/ pi *|cos(4)*C|------| - S|------|*sin(4)|
| | ____| | ____| |
\ \\/ pi / \\/ pi / /
--------------------------------------------------
6
=
/ / ___ \ / ___ \ \
___ ____ | |\/ 6 | |\/ 6 | |
\/ 6 *\/ pi *|cos(4)*C|------| - S|------|*sin(4)|
| | ____| | ____| |
\ \\/ pi / \\/ pi / /
--------------------------------------------------
6
sqrt(6)*sqrt(pi)*(cos(4)*fresnelc(sqrt(6)/sqrt(pi)) - fresnels(sqrt(6)/sqrt(pi))*sin(4))/6
Use the examples entering the upper and lower limits of integration.