Mister Exam

Integral of sin(0,5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi          
 --          
 3           
  /          
 |           
 |     /x\   
 |  sin|-| dx
 |     \2/   
 |           
/            
0            
0π3sin(x2)dx\int\limits_{0}^{\frac{\pi}{3}} \sin{\left(\frac{x}{2} \right)}\, dx
Detail solution
  1. Let u=x2u = \frac{x}{2}.

    Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

    4sin(u)du\int 4 \sin{\left(u \right)}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(u)du=2sin(u)du\int 2 \sin{\left(u \right)}\, du = 2 \int \sin{\left(u \right)}\, du

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: 2cos(u)- 2 \cos{\left(u \right)}

    Now substitute uu back in:

    2cos(x2)- 2 \cos{\left(\frac{x}{2} \right)}

  2. Add the constant of integration:

    2cos(x2)+constant- 2 \cos{\left(\frac{x}{2} \right)}+ \mathrm{constant}


The answer is:

2cos(x2)+constant- 2 \cos{\left(\frac{x}{2} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                        
 |                         
 |    /x\               /x\
 | sin|-| dx = C - 2*cos|-|
 |    \2/               \2/
 |                         
/                          
2cos(x2)-2\,\cos \left({{x}\over{2}}\right)
The graph
0.000.100.200.300.400.500.600.700.800.901.002.5-2.5
The answer [src]
      ___
2 - \/ 3 
3+2- \sqrt{3} + 2
=
=
      ___
2 - \/ 3 
3+2- \sqrt{3} + 2
Numerical answer [src]
0.267949192431123
0.267949192431123
The graph
Integral of sin(0,5x) dx

    Use the examples entering the upper and lower limits of integration.