pi -- 4 / | | / 5 4 \ | \sin (x) + cos (x)/ dx | / -pi ---- 4
Integral(sin(x)^5 + cos(x)^4, (x, -pi/4, pi/4))
Integrate term-by-term:
Rewrite the integrand:
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of sine is negative cosine:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of sine is negative cosine:
The result is:
Rewrite the integrand:
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
The result is:
Add the constant of integration:
The answer is:
/ | 5 3 | / 5 4 \ cos (x) sin(2*x) sin(4*x) 2*cos (x) 3*x | \sin (x) + cos (x)/ dx = C - cos(x) - ------- + -------- + -------- + --------- + --- | 5 4 32 3 8 /
1 3*pi - + ---- 2 16
=
1 3*pi - + ---- 2 16
Use the examples entering the upper and lower limits of integration.