Mister Exam

Other calculators

Integral of (сos4x-2sin0,5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  pi                             
  --                             
  2                              
   /                             
  |                              
  |  (cos(4*x) - 2*sin(0.5*x)) dx
  |                              
 /                               
-pi                              
----                             
 2                               
$$\int\limits_{- \frac{\pi}{2}}^{\frac{\pi}{2}} \left(- 2 \sin{\left(0.5 x \right)} + \cos{\left(4 x \right)}\right)\, dx$$
Integral(cos(4*x) - 2*sin(0.5*x), (x, -pi/2, pi/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                    sin(4*x)                 
 | (cos(4*x) - 2*sin(0.5*x)) dx = C + -------- + 4.0*cos(0.5*x)
 |                                       4                     
/                                                              
$$\int \left(- 2 \sin{\left(0.5 x \right)} + \cos{\left(4 x \right)}\right)\, dx = C + \frac{\sin{\left(4 x \right)}}{4} + 4.0 \cos{\left(0.5 x \right)}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
-1.22697953000935e-16
-1.22697953000935e-16

    Use the examples entering the upper and lower limits of integration.