Integral of sin(x)^10 dx
The solution
Detail solution
-
Rewrite the integrand:
sin10(x)=(21−2cos(2x))5
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(21−2cos(2x))5=−32cos5(2x)+325cos4(2x)−165cos3(2x)+165cos2(2x)−325cos(2x)+321
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos5(2x))dx=−32∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
Method #2
-
Rewrite the integrand:
(1−sin2(2x))2cos(2x)=sin4(2x)cos(2x)−2sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 10u5
Now substitute u back in:
10sin5(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(2x)cos(2x))dx=−2∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −3sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: 10sin5(2x)−3sin3(2x)+2sin(2x)
Method #3
-
Rewrite the integrand:
(1−sin2(2x))2cos(2x)=sin4(2x)cos(2x)−2sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 10u5
Now substitute u back in:
10sin5(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(2x)cos(2x))dx=−2∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −3sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: 10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: −320sin5(2x)+96sin3(2x)−64sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫325cos4(2x)dx=325∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 25615x+2565sin(4x)+20485sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−165cos3(2x))dx=−165∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 965sin3(2x)−325sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫165cos2(2x)dx=165∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 325x+1285sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−325cos(2x))dx=−325∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −645sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫321dx=32x
The result is: 25663x−320sin5(2x)+16sin3(2x)−4sin(2x)+25615sin(4x)+20485sin(8x)
Method #2
-
Rewrite the integrand:
(21−2cos(2x))5=−32cos5(2x)+325cos4(2x)−165cos3(2x)+165cos2(2x)−325cos(2x)+321
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos5(2x))dx=−32∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: −320sin5(2x)+96sin3(2x)−64sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫325cos4(2x)dx=325∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 25615x+2565sin(4x)+20485sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−165cos3(2x))dx=−165∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 965sin3(2x)−325sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫165cos2(2x)dx=165∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 325x+1285sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−325cos(2x))dx=−325∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −645sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫321dx=32x
The result is: 25663x−320sin5(2x)+16sin3(2x)−4sin(2x)+25615sin(4x)+20485sin(8x)
-
Add the constant of integration:
25663x−320sin5(2x)+16sin3(2x)−4sin(2x)+25615sin(4x)+20485sin(8x)+constant
The answer is:
25663x−320sin5(2x)+16sin3(2x)−4sin(2x)+25615sin(4x)+20485sin(8x)+constant
The answer (Indefinite)
[src]
/
| 5 3
| 10 sin(2*x) sin (2*x) sin (2*x) 5*sin(8*x) 15*sin(4*x) 63*x
| sin (x) dx = C - -------- - --------- + --------- + ---------- + ----------- + ----
| 4 320 16 2048 256 256
/
2645(82sin(8x)+4x+2sin(4x)+x)+325(2sin(4x)+2x)−325sin5(2x)−32sin3(2x)+sin(2x)−165(sin(2x)−3sin3(2x))−325sin(2x)+16x
The graph
3 5 7 9
63 63*cos(1)*sin(1) 21*sin (1)*cos(1) 21*sin (1)*cos(1) 9*sin (1)*cos(1) sin (1)*cos(1)
--- - ---------------- - ----------------- - ----------------- - ---------------- - --------------
256 256 128 160 80 10
1024025sin8+600sin4−32sin52+640sin32−2560sin2+2520
=
3 5 7 9
63 63*cos(1)*sin(1) 21*sin (1)*cos(1) 21*sin (1)*cos(1) 9*sin (1)*cos(1) sin (1)*cos(1)
--- - ---------------- - ----------------- - ----------------- - ---------------- - --------------
256 256 128 160 80 10
−25663sin(1)cos(1)−12821sin3(1)cos(1)−16021sin5(1)cos(1)−809sin7(1)cos(1)−10sin9(1)cos(1)+25663
Use the examples entering the upper and lower limits of integration.