Mister Exam

Other calculators


(dx)/(4x^2+12x+13)

Integral of (dx)/(4x^2+12x+13) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |     2               
 |  4*x  + 12*x + 13   
 |                     
/                      
0                      
$$\int\limits_{0}^{\infty} \frac{1}{\left(4 x^{2} + 12 x\right) + 13}\, dx$$
Integral(1/(4*x^2 + 12*x + 13), (x, 0, oo))
Detail solution
We have the integral:
  /                   
 |                    
 |        1           
 | ---------------- dx
 |    2               
 | 4*x  + 12*x + 13   
 |                    
/                     
Rewrite the integrand
       1                    1         
---------------- = -------------------
   2                 /          2    \
4*x  + 12*x + 13   4*\(-x - 3/2)  + 1/
or
  /                     
 |                      
 |        1             
 | ---------------- dx  
 |    2                =
 | 4*x  + 12*x + 13     
 |                      
/                       
  
  /                  
 |                   
 |        1          
 | --------------- dx
 |           2       
 | (-x - 3/2)  + 1   
 |                   
/                    
---------------------
          4          
In the integral
  /                  
 |                   
 |        1          
 | --------------- dx
 |           2       
 | (-x - 3/2)  + 1   
 |                   
/                    
---------------------
          4          
do replacement
v = -3/2 - x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv          
 |      2             
 | 1 + v              
 |                    
/              atan(v)
------------ = -------
     4            4   
do backward replacement
  /                                  
 |                                   
 |        1                          
 | --------------- dx                
 |           2                       
 | (-x - 3/2)  + 1                   
 |                                   
/                       atan(3/2 + x)
--------------------- = -------------
          4                   4      
Solution is:
    atan(3/2 + x)
C + -------------
          4      
The answer (Indefinite) [src]
  /                                       
 |                                        
 |        1                  atan(3/2 + x)
 | ---------------- dx = C + -------------
 |    2                            4      
 | 4*x  + 12*x + 13                       
 |                                        
/                                         
$$\int \frac{1}{\left(4 x^{2} + 12 x\right) + 13}\, dx = C + \frac{\operatorname{atan}{\left(x + \frac{3}{2} \right)}}{4}$$
The graph
The answer [src]
  atan(3/2)   pi
- --------- + --
      4       8 
$$- \frac{\operatorname{atan}{\left(\frac{3}{2} \right)}}{4} + \frac{\pi}{8}$$
=
=
  atan(3/2)   pi
- --------- + --
      4       8 
$$- \frac{\operatorname{atan}{\left(\frac{3}{2} \right)}}{4} + \frac{\pi}{8}$$
-atan(3/2)/4 + pi/8
The graph
Integral of (dx)/(4x^2+12x+13) dx

    Use the examples entering the upper and lower limits of integration.