Integral of cos(7x+2) dx
The solution
Detail solution
-
Let u=7x+2.
Then let du=7dx and substitute 7du:
∫49cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫7cos(u)du=7∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 7sin(u)
Now substitute u back in:
7sin(7x+2)
-
Now simplify:
7sin(7x+2)
-
Add the constant of integration:
7sin(7x+2)+constant
The answer is:
7sin(7x+2)+constant
The answer (Indefinite)
[src]
/
| sin(7*x + 2)
| cos(7*x + 2) dx = C + ------------
| 7
/
7sin(7x+2)
The graph
sin(2) sin(9)
- ------ + ------
7 7
7sin9−7sin2
=
sin(2) sin(9)
- ------ + ------
7 7
−7sin(2)+7sin(9)
Use the examples entering the upper and lower limits of integration.