Mister Exam

Other calculators


cos(7x+2)

Integral of cos(7x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  cos(7*x + 2) dx
 |                 
/                  
0                  
01cos(7x+2)dx\int\limits_{0}^{1} \cos{\left(7 x + 2 \right)}\, dx
Integral(cos(7*x + 2), (x, 0, 1))
Detail solution
  1. Let u=7x+2u = 7 x + 2.

    Then let du=7dxdu = 7 dx and substitute du7\frac{du}{7}:

    cos(u)49du\int \frac{\cos{\left(u \right)}}{49}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      cos(u)7du=cos(u)du7\int \frac{\cos{\left(u \right)}}{7}\, du = \frac{\int \cos{\left(u \right)}\, du}{7}

      1. The integral of cosine is sine:

        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

      So, the result is: sin(u)7\frac{\sin{\left(u \right)}}{7}

    Now substitute uu back in:

    sin(7x+2)7\frac{\sin{\left(7 x + 2 \right)}}{7}

  2. Now simplify:

    sin(7x+2)7\frac{\sin{\left(7 x + 2 \right)}}{7}

  3. Add the constant of integration:

    sin(7x+2)7+constant\frac{\sin{\left(7 x + 2 \right)}}{7}+ \mathrm{constant}


The answer is:

sin(7x+2)7+constant\frac{\sin{\left(7 x + 2 \right)}}{7}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                       sin(7*x + 2)
 | cos(7*x + 2) dx = C + ------------
 |                            7      
/                                    
sin(7x+2)7{{\sin \left(7\,x+2\right)}\over{7}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
  sin(2)   sin(9)
- ------ + ------
    7        7   
sin97sin27{{\sin 9}\over{7}}-{{\sin 2}\over{7}}
=
=
  sin(2)   sin(9)
- ------ + ------
    7        7   
sin(2)7+sin(9)7- \frac{\sin{\left(2 \right)}}{7} + \frac{\sin{\left(9 \right)}}{7}
Numerical answer [src]
-0.0710255630834179
-0.0710255630834179
The graph
Integral of cos(7x+2) dx

    Use the examples entering the upper and lower limits of integration.