10 sin (x)
sin(x)^10
Let u=sin(x)u = \sin{\left(x \right)}u=sin(x).
Apply the power rule: u10u^{10}u10 goes to 10u910 u^{9}10u9
Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}dxdsin(x):
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
9 10*sin (x)*cos(x)
8 / 2 2 \ 10*sin (x)*\- sin (x) + 9*cos (x)/
7 / 2 2 \ 40*sin (x)*\- 7*sin (x) + 18*cos (x)/*cos(x)
6 / 4 4 2 2 \ 40*sin (x)*\7*sin (x) + 126*cos (x) - 117*cos (x)*sin (x)/