Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$10 \sin^{9}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
8 / 2 2 \
10*sin (x)*\- sin (x) + 9*cos (x)/
$$10 \left(- \sin^{2}{\left(x \right)} + 9 \cos^{2}{\left(x \right)}\right) \sin^{8}{\left(x \right)}$$
The third derivative
[src]
7 / 2 2 \
40*sin (x)*\- 7*sin (x) + 18*cos (x)/*cos(x)
$$40 \left(- 7 \sin^{2}{\left(x \right)} + 18 \cos^{2}{\left(x \right)}\right) \sin^{7}{\left(x \right)} \cos{\left(x \right)}$$
6 / 4 4 2 2 \
40*sin (x)*\7*sin (x) + 126*cos (x) - 117*cos (x)*sin (x)/
$$40 \left(7 \sin^{4}{\left(x \right)} - 117 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} + 126 \cos^{4}{\left(x \right)}\right) \sin^{6}{\left(x \right)}$$