Mister Exam

Integral of sinxtanx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  sin(x)*tan(x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sin{\left(x \right)} \tan{\left(x \right)}\, dx$$
Integral(sin(x)*tan(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                  
 |                        log(1 + sin(x))            log(-1 + sin(x))
 | sin(x)*tan(x) dx = C + --------------- - sin(x) - ----------------
 |                               2                          2        
/                                                                    
$$\int \sin{\left(x \right)} \tan{\left(x \right)}\, dx = C - \frac{\log{\left(\sin{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\sin{\left(x \right)} + 1 \right)}}{2} - \sin{\left(x \right)}$$
The graph
The answer [src]
log(1 + sin(1))            log(1 - sin(1))
--------------- - sin(1) - ---------------
       2                          2       
$$- \sin{\left(1 \right)} + \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
=
=
log(1 + sin(1))            log(1 - sin(1))
--------------- - sin(1) - ---------------
       2                          2       
$$- \sin{\left(1 \right)} + \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
log(1 + sin(1))/2 - sin(1) - log(1 - sin(1))/2
Numerical answer [src]
0.384720186075621
0.384720186075621
The graph
Integral of sinxtanx dx

    Use the examples entering the upper and lower limits of integration.