Integral of sinx*tanx dx
The solution
The answer (Indefinite)
[src]
/
| log(1 + sin(x)) log(-1 + sin(x))
| sin(x)*tan(x) dx = C + --------------- - sin(x) - ----------------
| 2 2
/
∫sin(x)tan(x)dx=C−2log(sin(x)−1)+2log(sin(x)+1)−sin(x)
The graph
log(1 + sin(1)) log(1 - sin(1))
--------------- - sin(1) - ---------------
2 2
−sin(1)+2log(sin(1)+1)−2log(1−sin(1))
=
log(1 + sin(1)) log(1 - sin(1))
--------------- - sin(1) - ---------------
2 2
−sin(1)+2log(sin(1)+1)−2log(1−sin(1))
log(1 + sin(1))/2 - sin(1) - log(1 - sin(1))/2
Use the examples entering the upper and lower limits of integration.