Integral of sinx*tanx dx
The solution
The answer (Indefinite)
[src]
/
| log(1 + sin(x)) log(-1 + sin(x))
| sin(x)*tan(x) dx = C + --------------- - sin(x) - ----------------
| 2 2
/
$$\int \sin{\left(x \right)} \tan{\left(x \right)}\, dx = C - \frac{\log{\left(\sin{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\sin{\left(x \right)} + 1 \right)}}{2} - \sin{\left(x \right)}$$
log(1 + sin(1)) log(1 - sin(1))
--------------- - sin(1) - ---------------
2 2
$$- \sin{\left(1 \right)} + \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
=
log(1 + sin(1)) log(1 - sin(1))
--------------- - sin(1) - ---------------
2 2
$$- \sin{\left(1 \right)} + \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
log(1 + sin(1))/2 - sin(1) - log(1 - sin(1))/2
Use the examples entering the upper and lower limits of integration.