Mister Exam

Other calculators

Integral of -sinx*tanx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  -sin(x)*tan(x) dx
 |                   
/                    
0                    
01sin(x)tan(x)dx\int\limits_{0}^{1} - \sin{\left(x \right)} \tan{\left(x \right)}\, dx
Integral((-sin(x))*tan(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                   
 |                         log(-1 + sin(x))   log(1 + sin(x))         
 | -sin(x)*tan(x) dx = C + ---------------- - --------------- + sin(x)
 |                                2                  2                
/                                                                     
sin(x)tan(x)dx=C+log(sin(x)1)2log(sin(x)+1)2+sin(x)\int - \sin{\left(x \right)} \tan{\left(x \right)}\, dx = C + \frac{\log{\left(\sin{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\sin{\left(x \right)} + 1 \right)}}{2} + \sin{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
log(1 - sin(1))   log(1 + sin(1))         
--------------- - --------------- + sin(1)
       2                 2                
log(1sin(1))2log(sin(1)+1)2+sin(1)\frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2} - \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} + \sin{\left(1 \right)}
=
=
log(1 - sin(1))   log(1 + sin(1))         
--------------- - --------------- + sin(1)
       2                 2                
log(1sin(1))2log(sin(1)+1)2+sin(1)\frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2} - \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} + \sin{\left(1 \right)}
log(1 - sin(1))/2 - log(1 + sin(1))/2 + sin(1)
Numerical answer [src]
-0.384720186075621
-0.384720186075621

    Use the examples entering the upper and lower limits of integration.