Integral of -sinx*tanx dx
The solution
The answer (Indefinite)
[src]
/
| log(-1 + sin(x)) log(1 + sin(x))
| -sin(x)*tan(x) dx = C + ---------------- - --------------- + sin(x)
| 2 2
/
∫−sin(x)tan(x)dx=C+2log(sin(x)−1)−2log(sin(x)+1)+sin(x)
The graph
log(1 - sin(1)) log(1 + sin(1))
--------------- - --------------- + sin(1)
2 2
2log(1−sin(1))−2log(sin(1)+1)+sin(1)
=
log(1 - sin(1)) log(1 + sin(1))
--------------- - --------------- + sin(1)
2 2
2log(1−sin(1))−2log(sin(1)+1)+sin(1)
log(1 - sin(1))/2 - log(1 + sin(1))/2 + sin(1)
Use the examples entering the upper and lower limits of integration.