Integral of -sinx*tanx dx
The solution
The answer (Indefinite)
[src]
/
| log(-1 + sin(x)) log(1 + sin(x))
| -sin(x)*tan(x) dx = C + ---------------- - --------------- + sin(x)
| 2 2
/
$$\int - \sin{\left(x \right)} \tan{\left(x \right)}\, dx = C + \frac{\log{\left(\sin{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\sin{\left(x \right)} + 1 \right)}}{2} + \sin{\left(x \right)}$$
log(1 - sin(1)) log(1 + sin(1))
--------------- - --------------- + sin(1)
2 2
$$\frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2} - \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} + \sin{\left(1 \right)}$$
=
log(1 - sin(1)) log(1 + sin(1))
--------------- - --------------- + sin(1)
2 2
$$\frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2} - \frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} + \sin{\left(1 \right)}$$
log(1 - sin(1))/2 - log(1 + sin(1))/2 + sin(1)
Use the examples entering the upper and lower limits of integration.