Mister Exam

Other calculators

Integral of a/(sin(x)*tan(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        a         
 |  ------------- dx
 |  sin(x)*tan(x)   
 |                  
/                   
0                   
01asin(x)tan(x)dx\int\limits_{0}^{1} \frac{a}{\sin{\left(x \right)} \tan{\left(x \right)}}\, dx
Integral(a/((sin(x)*tan(x))), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    asin(x)tan(x)dx=a1sin(x)tan(x)dx\int \frac{a}{\sin{\left(x \right)} \tan{\left(x \right)}}\, dx = a \int \frac{1}{\sin{\left(x \right)} \tan{\left(x \right)}}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      1sin(x)- \frac{1}{\sin{\left(x \right)}}

    So, the result is: asin(x)- \frac{a}{\sin{\left(x \right)}}

  2. Add the constant of integration:

    asin(x)+constant- \frac{a}{\sin{\left(x \right)}}+ \mathrm{constant}


The answer is:

asin(x)+constant- \frac{a}{\sin{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 |       a                  a   
 | ------------- dx = C - ------
 | sin(x)*tan(x)          sin(x)
 |                              
/                               
asin(x)tan(x)dx=Casin(x)\int \frac{a}{\sin{\left(x \right)} \tan{\left(x \right)}}\, dx = C - \frac{a}{\sin{\left(x \right)}}
The answer [src]
               a   
oo*sign(a) - ------
             sin(1)
asin(1)+sign(a)- \frac{a}{\sin{\left(1 \right)}} + \infty \operatorname{sign}{\left(a \right)}
=
=
               a   
oo*sign(a) - ------
             sin(1)
asin(1)+sign(a)- \frac{a}{\sin{\left(1 \right)}} + \infty \operatorname{sign}{\left(a \right)}
oo*sign(a) - a/sin(1)

    Use the examples entering the upper and lower limits of integration.