pi / | | sin(x)*sin(n*x) dx | / 0
Integral(sin(x)*sin(n*x), (x, 0, pi))
// 2 2 \
||cos(x)*sin(x) x*cos (x) x*sin (x) |
||------------- - --------- - --------- for n = -1|
|| 2 2 2 |
|| |
/ || 2 2 |
| ||x*cos (x) x*sin (x) cos(x)*sin(x) |
| sin(x)*sin(n*x) dx = C + |<--------- + --------- - ------------- for n = 1 |
| || 2 2 2 |
/ || |
|| cos(x)*sin(n*x) n*cos(n*x)*sin(x) |
|| --------------- - ----------------- otherwise |
|| 2 2 |
|| -1 + n -1 + n |
\\ /
/ -pi | ---- for n = -1 | 2 | | pi | -- for n = 1 < 2 | |-sin(pi*n) |----------- otherwise | 2 | -1 + n \
=
/ -pi | ---- for n = -1 | 2 | | pi | -- for n = 1 < 2 | |-sin(pi*n) |----------- otherwise | 2 | -1 + n \
Piecewise((-pi/2, n = -1), (pi/2, n = 1), (-sin(pi*n)/(-1 + n^2), True))
Use the examples entering the upper and lower limits of integration.