1 / | | sin(x)*sin(n*x) dx | / 0
Integral(sin(x)*sin(n*x), (x, 0, 1))
// 2 2 \
||cos(x)*sin(x) x*cos (x) x*sin (x) |
||------------- - --------- - --------- for n = -1|
|| 2 2 2 |
|| |
/ || 2 2 |
| ||x*cos (x) x*sin (x) cos(x)*sin(x) |
| sin(x)*sin(n*x) dx = C + |<--------- + --------- - ------------- for n = 1 |
| || 2 2 2 |
/ || |
|| cos(x)*sin(n*x) n*cos(n*x)*sin(x) |
|| --------------- - ----------------- otherwise |
|| 2 2 |
|| -1 + n -1 + n |
\\ /
/ 2 2 | cos (1) sin (1) cos(1)*sin(1) |- ------- - ------- + ------------- for n = -1 | 2 2 2 | | 2 2 | cos (1) sin (1) cos(1)*sin(1) < ------- + ------- - ------------- for n = 1 | 2 2 2 | | cos(1)*sin(n) n*cos(n)*sin(1) | ------------- - --------------- otherwise | 2 2 | -1 + n -1 + n \
=
/ 2 2 | cos (1) sin (1) cos(1)*sin(1) |- ------- - ------- + ------------- for n = -1 | 2 2 2 | | 2 2 | cos (1) sin (1) cos(1)*sin(1) < ------- + ------- - ------------- for n = 1 | 2 2 2 | | cos(1)*sin(n) n*cos(n)*sin(1) | ------------- - --------------- otherwise | 2 2 | -1 + n -1 + n \
Piecewise((-cos(1)^2/2 - sin(1)^2/2 + cos(1)*sin(1)/2, n = -1), (cos(1)^2/2 + sin(1)^2/2 - cos(1)*sin(1)/2, n = 1), (cos(1)*sin(n)/(-1 + n^2) - n*cos(n)*sin(1)/(-1 + n^2), True))
Use the examples entering the upper and lower limits of integration.