Mister Exam

Other calculators


exp(x)sin(x)sin(x)

Integral of exp(x)sin(x)sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |   x                 
 |  e *sin(x)*sin(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} e^{x} \sin{\left(x \right)} \sin{\left(x \right)}\, dx$$
Integral(exp(x)*sin(x)*sin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of the exponential function is itself.

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of the exponential function is itself.

    Now evaluate the sub-integral.

  3. Rewrite the integrand:

  4. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  5. Now simplify:

  6. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                          
 |                                2     x        2     x             x       
 |  x                        2*cos (x)*e    3*sin (x)*e    2*cos(x)*e *sin(x)
 | e *sin(x)*sin(x) dx = C + ------------ + ------------ - ------------------
 |                                5              5                 5         
/                                                                            
$$-{{2\,e^{x}\,\sin \left(2\,x\right)+e^{x}\,\cos \left(2\,x\right)-5 \,e^{x}}\over{10}}$$
The graph
The answer [src]
             2             2                       
  2   2*e*cos (1)   3*e*sin (1)   2*e*cos(1)*sin(1)
- - + ----------- + ----------- - -----------------
  5        5             5                5        
$$-{{2\,e\,\sin 2+e\,\cos 2-5\,e}\over{10}}-{{2}\over{5}}$$
=
=
             2             2                       
  2   2*e*cos (1)   3*e*sin (1)   2*e*cos(1)*sin(1)
- - + ----------- + ----------- - -----------------
  5        5             5                5        
$$- \frac{2 e \sin{\left(1 \right)} \cos{\left(1 \right)}}{5} - \frac{2}{5} + \frac{2 e \cos^{2}{\left(1 \right)}}{5} + \frac{3 e \sin^{2}{\left(1 \right)}}{5}$$
Numerical answer [src]
0.57791601820424
0.57791601820424
The graph
Integral of exp(x)sin(x)sin(x) dx

    Use the examples entering the upper and lower limits of integration.