Mister Exam

Other calculators


cos(x)*exp(sin(x))*sin(x)

Integral of cos(x)*exp(sin(x))*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |          sin(x)          
 |  cos(x)*e      *sin(x) dx
 |                          
/                           
0                           
$$\int\limits_{0}^{1} e^{\sin{\left(x \right)}} \cos{\left(x \right)} \sin{\left(x \right)}\, dx$$
Integral((cos(x)*exp(sin(x)))*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of the exponential function is itself.

      Now evaluate the sub-integral.

    2. The integral of the exponential function is itself.

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                                                        
 |         sin(x)                  sin(x)    sin(x)       
 | cos(x)*e      *sin(x) dx = C - e       + e      *sin(x)
 |                                                        
/                                                         
$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)} \sin{\left(x \right)}\, dx = C + e^{\sin{\left(x \right)}} \sin{\left(x \right)} - e^{\sin{\left(x \right)}}$$
The graph
The answer [src]
     sin(1)    sin(1)       
1 - e       + e      *sin(1)
$$- e^{\sin{\left(1 \right)}} + 1 + e^{\sin{\left(1 \right)}} \sin{\left(1 \right)}$$
=
=
     sin(1)    sin(1)       
1 - e       + e      *sin(1)
$$- e^{\sin{\left(1 \right)}} + 1 + e^{\sin{\left(1 \right)}} \sin{\left(1 \right)}$$
1 - exp(sin(1)) + exp(sin(1))*sin(1)
Numerical answer [src]
0.632248064512331
0.632248064512331
The graph
Integral of cos(x)*exp(sin(x))*sin(x) dx

    Use the examples entering the upper and lower limits of integration.