Integral of dx/sinxcos^3x dx
The solution
Detail solution
-
Rewrite the integrand:
sin(x)cos3(x)=sin(x)(1−sin2(x))cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute −du:
∫(−uu2−1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫uu2−1du=−∫uu2−1du
-
Let u=u2.
Then let du=2udu and substitute 2du:
∫2uu−1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫uu−1du=2∫uu−1du
-
Rewrite the integrand:
uu−1=1−u1
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
The result is: u−log(u)
So, the result is: 2u−2log(u)
Now substitute u back in:
2u2−2log(u2)
So, the result is: −2u2+2log(u2)
Now substitute u back in:
2log(sin2(x))−2sin2(x)
Method #2
-
Rewrite the integrand:
sin(x)(1−sin2(x))cos(x)=−sin(x)sin2(x)cos(x)−cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)sin2(x)cos(x)−cos(x))dx=−∫sin(x)sin2(x)cos(x)−cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫uu2−1du
-
Let u=u2.
Then let du=2udu and substitute 2du:
∫2uu−1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫uu−1du=2∫uu−1du
-
Rewrite the integrand:
uu−1=1−u1
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
The result is: u−log(u)
So, the result is: 2u−2log(u)
Now substitute u back in:
2u2−2log(u2)
Now substitute u back in:
−2log(sin2(x))+2sin2(x)
So, the result is: 2log(sin2(x))−2sin2(x)
Method #3
-
Rewrite the integrand:
sin(x)(1−sin2(x))cos(x)=−sin(x)cos(x)+sin(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos(x))dx=−∫sin(x)cos(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
So, the result is: 2cos2(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(sin(x))
The result is: log(sin(x))+2cos2(x)
-
Add the constant of integration:
2log(sin2(x))−2sin2(x)+constant
The answer is:
2log(sin2(x))−2sin2(x)+constant
The answer (Indefinite)
[src]
/
|
| 3 / 2 \ 2
| cos (x) log\sin (x)/ sin (x)
| ------- dx = C + ------------ - -------
| sin(x) 2 2
|
/
∫sin(x)cos3(x)dx=C+2log(sin2(x))−2sin2(x)
The graph
/ ___\ / ___\
1 |\/ 2 | |\/ 3 |
- - - log|-----| + log|-----|
8 \ 2 / \ 2 /
log(23)−81−log(22)
=
/ ___\ / ___\
1 |\/ 2 | |\/ 3 |
- - - log|-----| + log|-----|
8 \ 2 / \ 2 /
log(23)−81−log(22)
-1/8 - log(sqrt(2)/2) + log(sqrt(3)/2)
Use the examples entering the upper and lower limits of integration.