Mister Exam

Other calculators

Integral of dx/sinxcos^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi           
 --           
 3            
  /           
 |            
 |     3      
 |  cos (x)   
 |  ------- dx
 |   sin(x)   
 |            
/             
pi            
--            
4             
π4π3cos3(x)sin(x)dx\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos^{3}{\left(x \right)}}{\sin{\left(x \right)}}\, dx
Integral(cos(x)^3/sin(x), (x, pi/4, pi/3))
Detail solution
  1. Rewrite the integrand:

    cos3(x)sin(x)=(1sin2(x))cos(x)sin(x)\frac{\cos^{3}{\left(x \right)}}{\sin{\left(x \right)}} = \frac{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(x)u = \sin{\left(x \right)}.

      Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute du- du:

      (u21u)du\int \left(- \frac{u^{2} - 1}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u21udu=u21udu\int \frac{u^{2} - 1}{u}\, du = - \int \frac{u^{2} - 1}{u}\, du

        1. Let u=u2u = u^{2}.

          Then let du=2ududu = 2 u du and substitute du2\frac{du}{2}:

          u12udu\int \frac{u - 1}{2 u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u1udu=u1udu2\int \frac{u - 1}{u}\, du = \frac{\int \frac{u - 1}{u}\, du}{2}

            1. Rewrite the integrand:

              u1u=11u\frac{u - 1}{u} = 1 - \frac{1}{u}

            2. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              1. The integral of a constant times a function is the constant times the integral of the function:

                (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                So, the result is: log(u)- \log{\left(u \right)}

              The result is: ulog(u)u - \log{\left(u \right)}

            So, the result is: u2log(u)2\frac{u}{2} - \frac{\log{\left(u \right)}}{2}

          Now substitute uu back in:

          u22log(u2)2\frac{u^{2}}{2} - \frac{\log{\left(u^{2} \right)}}{2}

        So, the result is: u22+log(u2)2- \frac{u^{2}}{2} + \frac{\log{\left(u^{2} \right)}}{2}

      Now substitute uu back in:

      log(sin2(x))2sin2(x)2\frac{\log{\left(\sin^{2}{\left(x \right)} \right)}}{2} - \frac{\sin^{2}{\left(x \right)}}{2}

    Method #2

    1. Rewrite the integrand:

      (1sin2(x))cos(x)sin(x)=sin2(x)cos(x)cos(x)sin(x)\frac{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} = - \frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)} - \cos{\left(x \right)}}{\sin{\left(x \right)}}

    2. The integral of a constant times a function is the constant times the integral of the function:

      (sin2(x)cos(x)cos(x)sin(x))dx=sin2(x)cos(x)cos(x)sin(x)dx\int \left(- \frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)} - \cos{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx = - \int \frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)} - \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u21udu\int \frac{u^{2} - 1}{u}\, du

        1. Let u=u2u = u^{2}.

          Then let du=2ududu = 2 u du and substitute du2\frac{du}{2}:

          u12udu\int \frac{u - 1}{2 u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u1udu=u1udu2\int \frac{u - 1}{u}\, du = \frac{\int \frac{u - 1}{u}\, du}{2}

            1. Rewrite the integrand:

              u1u=11u\frac{u - 1}{u} = 1 - \frac{1}{u}

            2. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              1. The integral of a constant times a function is the constant times the integral of the function:

                (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                So, the result is: log(u)- \log{\left(u \right)}

              The result is: ulog(u)u - \log{\left(u \right)}

            So, the result is: u2log(u)2\frac{u}{2} - \frac{\log{\left(u \right)}}{2}

          Now substitute uu back in:

          u22log(u2)2\frac{u^{2}}{2} - \frac{\log{\left(u^{2} \right)}}{2}

        Now substitute uu back in:

        log(sin2(x))2+sin2(x)2- \frac{\log{\left(\sin^{2}{\left(x \right)} \right)}}{2} + \frac{\sin^{2}{\left(x \right)}}{2}

      So, the result is: log(sin2(x))2sin2(x)2\frac{\log{\left(\sin^{2}{\left(x \right)} \right)}}{2} - \frac{\sin^{2}{\left(x \right)}}{2}

    Method #3

    1. Rewrite the integrand:

      (1sin2(x))cos(x)sin(x)=sin(x)cos(x)+cos(x)sin(x)\frac{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} = - \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos(x))dx=sin(x)cos(x)dx\int \left(- \sin{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u)du\int \left(- u\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            udu=udu\int u\, du = - \int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            So, the result is: u22- \frac{u^{2}}{2}

          Now substitute uu back in:

          cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

        So, the result is: cos2(x)2\frac{\cos^{2}{\left(x \right)}}{2}

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        1udu\int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        Now substitute uu back in:

        log(sin(x))\log{\left(\sin{\left(x \right)} \right)}

      The result is: log(sin(x))+cos2(x)2\log{\left(\sin{\left(x \right)} \right)} + \frac{\cos^{2}{\left(x \right)}}{2}

  3. Add the constant of integration:

    log(sin2(x))2sin2(x)2+constant\frac{\log{\left(\sin^{2}{\left(x \right)} \right)}}{2} - \frac{\sin^{2}{\left(x \right)}}{2}+ \mathrm{constant}


The answer is:

log(sin2(x))2sin2(x)2+constant\frac{\log{\left(\sin^{2}{\left(x \right)} \right)}}{2} - \frac{\sin^{2}{\left(x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                        
 |    3                /   2   \      2   
 | cos (x)          log\sin (x)/   sin (x)
 | ------- dx = C + ------------ - -------
 |  sin(x)               2            2   
 |                                        
/                                         
cos3(x)sin(x)dx=C+log(sin2(x))2sin2(x)2\int \frac{\cos^{3}{\left(x \right)}}{\sin{\left(x \right)}}\, dx = C + \frac{\log{\left(\sin^{2}{\left(x \right)} \right)}}{2} - \frac{\sin^{2}{\left(x \right)}}{2}
The graph
0.8000.8250.8500.8750.9000.9250.9500.9751.0001.0251-1
The answer [src]
         /  ___\      /  ___\
  1      |\/ 2 |      |\/ 3 |
- - - log|-----| + log|-----|
  8      \  2  /      \  2  /
log(32)18log(22)\log{\left(\frac{\sqrt{3}}{2} \right)} - \frac{1}{8} - \log{\left(\frac{\sqrt{2}}{2} \right)}
=
=
         /  ___\      /  ___\
  1      |\/ 2 |      |\/ 3 |
- - - log|-----| + log|-----|
  8      \  2  /      \  2  /
log(32)18log(22)\log{\left(\frac{\sqrt{3}}{2} \right)} - \frac{1}{8} - \log{\left(\frac{\sqrt{2}}{2} \right)}
-1/8 - log(sqrt(2)/2) + log(sqrt(3)/2)
Numerical answer [src]
0.0777325540540822
0.0777325540540822

    Use the examples entering the upper and lower limits of integration.