Mister Exam

Other calculators

Integral of sin(w*t)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  sin (w*t) dw
 |              
/               
0               
$$\int\limits_{0}^{1} \sin^{2}{\left(t w \right)}\, dw$$
Integral(sin(w*t)^2, (w, 0, 1))
The answer (Indefinite) [src]
                          /    w       for t = 0
                          |                     
  /                       
            
$$\int \sin^{2}{\left(t w \right)}\, dw = C + \frac{w}{2} - \frac{\begin{cases} w & \text{for}\: t = 0 \\\frac{\sin{\left(2 t w \right)}}{2 t} & \text{otherwise} \end{cases}}{2}$$
The answer [src]
/t   cos(t)*sin(t)                                  
|- - -------------                                  
|2         2                                        
<-----------------  for And(t > -oo, t < oo, t != 0)
|        t                                          
|                                                   
\        0                     otherwise            
$$\begin{cases} \frac{\frac{t}{2} - \frac{\sin{\left(t \right)} \cos{\left(t \right)}}{2}}{t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/t   cos(t)*sin(t)                                  
|- - -------------                                  
|2         2                                        
<-----------------  for And(t > -oo, t < oo, t != 0)
|        t                                          
|                                                   
\        0                     otherwise            
$$\begin{cases} \frac{\frac{t}{2} - \frac{\sin{\left(t \right)} \cos{\left(t \right)}}{2}}{t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise(((t/2 - cos(t)*sin(t)/2)/t, (t > -oo)∧(t < oo)∧(Ne(t, 0))), (0, True))

    Use the examples entering the upper and lower limits of integration.