Integral of sin(w*t)^2 dx
The solution
The answer (Indefinite)
[src]
$$\int \sin^{2}{\left(t w \right)}\, dw = C + \frac{w}{2} - \frac{\begin{cases} w & \text{for}\: t = 0 \\\frac{\sin{\left(2 t w \right)}}{2 t} & \text{otherwise} \end{cases}}{2}$$
/t cos(t)*sin(t)
|- - -------------
|2 2
<----------------- for And(t > -oo, t < oo, t != 0)
| t
|
\ 0 otherwise
$$\begin{cases} \frac{\frac{t}{2} - \frac{\sin{\left(t \right)} \cos{\left(t \right)}}{2}}{t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/t cos(t)*sin(t)
|- - -------------
|2 2
<----------------- for And(t > -oo, t < oo, t != 0)
| t
|
\ 0 otherwise
$$\begin{cases} \frac{\frac{t}{2} - \frac{\sin{\left(t \right)} \cos{\left(t \right)}}{2}}{t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise(((t/2 - cos(t)*sin(t)/2)/t, (t > -oo)∧(t < oo)∧(Ne(t, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.