Mister Exam

Other calculators


sin(x)/(1+cos^2(x))

Integral of sin(x)/(1+cos^2(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     sin(x)     
 |  ----------- dx
 |         2      
 |  1 + cos (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
Integral(sin(x)/(1 + cos(x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                 
 |                                  
 |    sin(x)                        
 | ----------- dx = C - atan(cos(x))
 |        2                         
 | 1 + cos (x)                      
 |                                  
/                                   
$$\int \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx = C - \operatorname{atan}{\left(\cos{\left(x \right)} \right)}$$
The graph
The answer [src]
                pi
-atan(cos(1)) + --
                4 
$$- \operatorname{atan}{\left(\cos{\left(1 \right)} \right)} + \frac{\pi}{4}$$
=
=
                pi
-atan(cos(1)) + --
                4 
$$- \operatorname{atan}{\left(\cos{\left(1 \right)} \right)} + \frac{\pi}{4}$$
-atan(cos(1)) + pi/4
Numerical answer [src]
0.290030874178775
0.290030874178775
The graph
Integral of sin(x)/(1+cos^2(x)) dx

    Use the examples entering the upper and lower limits of integration.