Mister Exam

Integral of sinx/4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi          
  /          
 |           
 |  sin(x)   
 |  ------ dx
 |    4      
 |           
/            
0            
0πsin(x)4dx\int\limits_{0}^{\pi} \frac{\sin{\left(x \right)}}{4}\, dx
Integral(sin(x)/4, (x, 0, pi))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    sin(x)4dx=sin(x)dx4\int \frac{\sin{\left(x \right)}}{4}\, dx = \frac{\int \sin{\left(x \right)}\, dx}{4}

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    So, the result is: cos(x)4- \frac{\cos{\left(x \right)}}{4}

  2. Add the constant of integration:

    cos(x)4+constant- \frac{\cos{\left(x \right)}}{4}+ \mathrm{constant}


The answer is:

cos(x)4+constant- \frac{\cos{\left(x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 | sin(x)          cos(x)
 | ------ dx = C - ------
 |   4               4   
 |                       
/                        
sin(x)4dx=Ccos(x)4\int \frac{\sin{\left(x \right)}}{4}\, dx = C - \frac{\cos{\left(x \right)}}{4}
The graph
0.000.250.500.751.001.251.501.752.002.252.502.753.000.5-0.5
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5

    Use the examples entering the upper and lower limits of integration.