Integral of x×sinx/(4+tg^2x) dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| x*sin(x) | x*sin(x)
| ----------- dx = C + | ----------- dx
| 2 | 2
| 4 + tan (x) | 4 + tan (x)
| |
/ /
∫tan2(x)+4xsin(x)dx=C+∫tan2(x)+4xsin(x)dx
pi
--
3
/
|
| x*sin(x)
| ----------- dx
| 2
| 4 + tan (x)
|
/
-pi
----
3
−3π∫3πtan2(x)+4xsin(x)dx
=
pi
--
3
/
|
| x*sin(x)
| ----------- dx
| 2
| 4 + tan (x)
|
/
-pi
----
3
−3π∫3πtan2(x)+4xsin(x)dx
Integral(x*sin(x)/(4 + tan(x)^2), (x, -pi/3, pi/3))
Use the examples entering the upper and lower limits of integration.