Integral of sin(x/4)dx dx
The solution
Detail solution
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
-
Now simplify:
−4cos(4x)
-
Add the constant of integration:
−4cos(4x)+constant
The answer is:
−4cos(4x)+constant
The answer (Indefinite)
[src]
/
|
| /x\ /x\
| sin|-| dx = C - 4*cos|-|
| \4/ \4/
|
/
∫sin(4x)dx=C−4cos(4x)
The graph
4−4cos(41)
=
4−4cos(41)
Use the examples entering the upper and lower limits of integration.