Mister Exam

Other calculators

Integral of (sin(x/4))^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*p          
  /           
 |            
 |     3/x\   
 |  sin |-| dx
 |      \4/   
 |            
/             
0             
02psin3(x4)dx\int\limits_{0}^{2 p} \sin^{3}{\left(\frac{x}{4} \right)}\, dx
Integral(sin(x/4)^3, (x, 0, 2*p))
Detail solution
  1. Rewrite the integrand:

    sin3(x4)=(1cos2(x4))sin(x4)\sin^{3}{\left(\frac{x}{4} \right)} = \left(1 - \cos^{2}{\left(\frac{x}{4} \right)}\right) \sin{\left(\frac{x}{4} \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(x4)u = \cos{\left(\frac{x}{4} \right)}.

      Then let du=sin(x4)dx4du = - \frac{\sin{\left(\frac{x}{4} \right)} dx}{4} and substitute dudu:

      (4u24)du\int \left(4 u^{2} - 4\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          4u2du=4u2du\int 4 u^{2}\, du = 4 \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: 4u33\frac{4 u^{3}}{3}

        1. The integral of a constant is the constant times the variable of integration:

          (4)du=4u\int \left(-4\right)\, du = - 4 u

        The result is: 4u334u\frac{4 u^{3}}{3} - 4 u

      Now substitute uu back in:

      4cos3(x4)34cos(x4)\frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3} - 4 \cos{\left(\frac{x}{4} \right)}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x4))sin(x4)=sin(x4)cos2(x4)+sin(x4)\left(1 - \cos^{2}{\left(\frac{x}{4} \right)}\right) \sin{\left(\frac{x}{4} \right)} = - \sin{\left(\frac{x}{4} \right)} \cos^{2}{\left(\frac{x}{4} \right)} + \sin{\left(\frac{x}{4} \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x4)cos2(x4))dx=sin(x4)cos2(x4)dx\int \left(- \sin{\left(\frac{x}{4} \right)} \cos^{2}{\left(\frac{x}{4} \right)}\right)\, dx = - \int \sin{\left(\frac{x}{4} \right)} \cos^{2}{\left(\frac{x}{4} \right)}\, dx

        1. Let u=cos(x4)u = \cos{\left(\frac{x}{4} \right)}.

          Then let du=sin(x4)dx4du = - \frac{\sin{\left(\frac{x}{4} \right)} dx}{4} and substitute 4du- 4 du:

          (4u2)du\int \left(- 4 u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=4u2du\int u^{2}\, du = - 4 \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: 4u33- \frac{4 u^{3}}{3}

          Now substitute uu back in:

          4cos3(x4)3- \frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3}

        So, the result is: 4cos3(x4)3\frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3}

      1. Let u=x4u = \frac{x}{4}.

        Then let du=dx4du = \frac{dx}{4} and substitute 4du4 du:

        4sin(u)du\int 4 \sin{\left(u \right)}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=4sin(u)du\int \sin{\left(u \right)}\, du = 4 \int \sin{\left(u \right)}\, du

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: 4cos(u)- 4 \cos{\left(u \right)}

        Now substitute uu back in:

        4cos(x4)- 4 \cos{\left(\frac{x}{4} \right)}

      The result is: 4cos3(x4)34cos(x4)\frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3} - 4 \cos{\left(\frac{x}{4} \right)}

    Method #3

    1. Rewrite the integrand:

      (1cos2(x4))sin(x4)=sin(x4)cos2(x4)+sin(x4)\left(1 - \cos^{2}{\left(\frac{x}{4} \right)}\right) \sin{\left(\frac{x}{4} \right)} = - \sin{\left(\frac{x}{4} \right)} \cos^{2}{\left(\frac{x}{4} \right)} + \sin{\left(\frac{x}{4} \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x4)cos2(x4))dx=sin(x4)cos2(x4)dx\int \left(- \sin{\left(\frac{x}{4} \right)} \cos^{2}{\left(\frac{x}{4} \right)}\right)\, dx = - \int \sin{\left(\frac{x}{4} \right)} \cos^{2}{\left(\frac{x}{4} \right)}\, dx

        1. Let u=cos(x4)u = \cos{\left(\frac{x}{4} \right)}.

          Then let du=sin(x4)dx4du = - \frac{\sin{\left(\frac{x}{4} \right)} dx}{4} and substitute 4du- 4 du:

          (4u2)du\int \left(- 4 u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=4u2du\int u^{2}\, du = - 4 \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: 4u33- \frac{4 u^{3}}{3}

          Now substitute uu back in:

          4cos3(x4)3- \frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3}

        So, the result is: 4cos3(x4)3\frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3}

      1. Let u=x4u = \frac{x}{4}.

        Then let du=dx4du = \frac{dx}{4} and substitute 4du4 du:

        4sin(u)du\int 4 \sin{\left(u \right)}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=4sin(u)du\int \sin{\left(u \right)}\, du = 4 \int \sin{\left(u \right)}\, du

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: 4cos(u)- 4 \cos{\left(u \right)}

        Now substitute uu back in:

        4cos(x4)- 4 \cos{\left(\frac{x}{4} \right)}

      The result is: 4cos3(x4)34cos(x4)\frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3} - 4 \cos{\left(\frac{x}{4} \right)}

  3. Now simplify:

    3cos(x4)+cos(3x4)3- 3 \cos{\left(\frac{x}{4} \right)} + \frac{\cos{\left(\frac{3 x}{4} \right)}}{3}

  4. Add the constant of integration:

    3cos(x4)+cos(3x4)3+constant- 3 \cos{\left(\frac{x}{4} \right)} + \frac{\cos{\left(\frac{3 x}{4} \right)}}{3}+ \mathrm{constant}


The answer is:

3cos(x4)+cos(3x4)3+constant- 3 \cos{\left(\frac{x}{4} \right)} + \frac{\cos{\left(\frac{3 x}{4} \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 3/x\
 |                             4*cos |-|
 |    3/x\               /x\         \4/
 | sin |-| dx = C - 4*cos|-| + ---------
 |     \4/               \4/       3    
 |                                      
/                                       
sin3(x4)dx=C+4cos3(x4)34cos(x4)\int \sin^{3}{\left(\frac{x}{4} \right)}\, dx = C + \frac{4 \cos^{3}{\left(\frac{x}{4} \right)}}{3} - 4 \cos{\left(\frac{x}{4} \right)}
The answer [src]
                    3/p\
               4*cos |-|
8        /p\         \2/
- - 4*cos|-| + ---------
3        \2/       3    
4cos3(p2)34cos(p2)+83\frac{4 \cos^{3}{\left(\frac{p}{2} \right)}}{3} - 4 \cos{\left(\frac{p}{2} \right)} + \frac{8}{3}
=
=
                    3/p\
               4*cos |-|
8        /p\         \2/
- - 4*cos|-| + ---------
3        \2/       3    
4cos3(p2)34cos(p2)+83\frac{4 \cos^{3}{\left(\frac{p}{2} \right)}}{3} - 4 \cos{\left(\frac{p}{2} \right)} + \frac{8}{3}
8/3 - 4*cos(p/2) + 4*cos(p/2)^3/3

    Use the examples entering the upper and lower limits of integration.