Integral of (sin(x/4))^3 dx
The solution
Detail solution
-
Rewrite the integrand:
sin3(4x)=(1−cos2(4x))sin(4x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(4x).
Then let du=−4sin(4x)dx and substitute du:
∫(4u2−4)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4u2du=4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 34u3
-
The integral of a constant is the constant times the variable of integration:
∫(−4)du=−4u
The result is: 34u3−4u
Now substitute u back in:
34cos3(4x)−4cos(4x)
Method #2
-
Rewrite the integrand:
(1−cos2(4x))sin(4x)=−sin(4x)cos2(4x)+sin(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(4x)cos2(4x))dx=−∫sin(4x)cos2(4x)dx
-
Let u=cos(4x).
Then let du=−4sin(4x)dx and substitute −4du:
∫(−4u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −34u3
Now substitute u back in:
−34cos3(4x)
So, the result is: 34cos3(4x)
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
The result is: 34cos3(4x)−4cos(4x)
Method #3
-
Rewrite the integrand:
(1−cos2(4x))sin(4x)=−sin(4x)cos2(4x)+sin(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(4x)cos2(4x))dx=−∫sin(4x)cos2(4x)dx
-
Let u=cos(4x).
Then let du=−4sin(4x)dx and substitute −4du:
∫(−4u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −34u3
Now substitute u back in:
−34cos3(4x)
So, the result is: 34cos3(4x)
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
The result is: 34cos3(4x)−4cos(4x)
-
Now simplify:
−3cos(4x)+3cos(43x)
-
Add the constant of integration:
−3cos(4x)+3cos(43x)+constant
The answer is:
−3cos(4x)+3cos(43x)+constant
The answer (Indefinite)
[src]
/ 3/x\
| 4*cos |-|
| 3/x\ /x\ \4/
| sin |-| dx = C - 4*cos|-| + ---------
| \4/ \4/ 3
|
/
∫sin3(4x)dx=C+34cos3(4x)−4cos(4x)
3/p\
4*cos |-|
8 /p\ \2/
- - 4*cos|-| + ---------
3 \2/ 3
34cos3(2p)−4cos(2p)+38
=
3/p\
4*cos |-|
8 /p\ \2/
- - 4*cos|-| + ---------
3 \2/ 3
34cos3(2p)−4cos(2p)+38
8/3 - 4*cos(p/2) + 4*cos(p/2)^3/3
Use the examples entering the upper and lower limits of integration.