Mister Exam

Other calculators


cos(1-3x)

Integral of cos(1-3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                
  /                
 |                 
 |  cos(1 - 3*x) dx
 |                 
/                  
0                  
00cos(13x)dx\int\limits_{0}^{0} \cos{\left(1 - 3 x \right)}\, dx
Integral(cos(1 - 3*x), (x, 0, 0))
Detail solution
  1. Let u=13xu = 1 - 3 x.

    Then let du=3dxdu = - 3 dx and substitute du3- \frac{du}{3}:

    (cos(u)3)du\int \left(- \frac{\cos{\left(u \right)}}{3}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      cos(u)du=cos(u)du3\int \cos{\left(u \right)}\, du = - \frac{\int \cos{\left(u \right)}\, du}{3}

      1. The integral of cosine is sine:

        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

      So, the result is: sin(u)3- \frac{\sin{\left(u \right)}}{3}

    Now substitute uu back in:

    sin(3x1)3\frac{\sin{\left(3 x - 1 \right)}}{3}

  2. Add the constant of integration:

    sin(3x1)3+constant\frac{\sin{\left(3 x - 1 \right)}}{3}+ \mathrm{constant}


The answer is:

sin(3x1)3+constant\frac{\sin{\left(3 x - 1 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                       sin(-1 + 3*x)
 | cos(1 - 3*x) dx = C + -------------
 |                             3      
/                                     
cos(13x)dx=C+sin(3x1)3\int \cos{\left(1 - 3 x \right)}\, dx = C + \frac{\sin{\left(3 x - 1 \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0
The graph
Integral of cos(1-3x) dx

    Use the examples entering the upper and lower limits of integration.