Integral of dx/sqrt(4-25x^2) dx
The solution
Detail solution
TrigSubstitutionRule(theta=_theta, func=2*sin(_theta)/5, rewritten=1/5, substep=ConstantRule(constant=1/5, context=1/5, symbol=_theta), restriction=(x > -2/5) & (x < 2/5), context=1/sqrt(4 - 25*x**2), symbol=x)
-
Now simplify:
{5asin(25x)NaNforx>−52∧x<52otherwise
-
Add the constant of integration:
{5asin(25x)NaNforx>−52∧x<52otherwise+constant
The answer is:
{5asin(25x)NaNforx>−52∧x<52otherwise+constant
The answer (Indefinite)
[src]
/
| // /5*x\ \
| 1 ||asin|---| |
| 1*-------------- dx = C + |< \ 2 / |
| ___________ ||--------- for And(x > -2/5, x < 2/5)|
| / 2 \\ 5 /
| \/ 4 - 25*x
|
/
5arcsin(25x)
The graph
5arcsin(25)
=
5asin(25)
(0.286954509007177 - 0.320835134585762j)
(0.286954509007177 - 0.320835134585762j)
Use the examples entering the upper and lower limits of integration.