Mister Exam

Other calculators

Integral of (sin^3)*((6x)*cos6x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                        
  /                        
 |                         
 |     3                   
 |  sin (x)*6*x*cos(6*x) dx
 |                         
/                          
0                          
00sin3(x)6xcos(6x)dx\int\limits_{0}^{0} \sin^{3}{\left(x \right)} 6 x \cos{\left(6 x \right)}\, dx
Integral(sin(x)^3*6*x*cos(6*x), (x, 0, 0))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    sin3(x)6xcos(6x)dx=6xsin3(x)cos(6x)dx\int \sin^{3}{\left(x \right)} 6 x \cos{\left(6 x \right)}\, dx = 6 \int x \sin^{3}{\left(x \right)} \cos{\left(6 x \right)}\, dx

    1. There are multiple ways to do this integral.

      Method #1

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin3(x)cos(6x)\operatorname{dv}{\left(x \right)} = \sin^{3}{\left(x \right)} \cos{\left(6 x \right)}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. Rewrite the integrand:

          sin3(x)cos(6x)=(1cos2(x))sin(x)cos(6x)\sin^{3}{\left(x \right)} \cos{\left(6 x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(6 x \right)}

        2. Rewrite the integrand:

          (1cos2(x))sin(x)cos(6x)=sin(x)cos2(x)cos(6x)+sin(x)cos(6x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(6 x \right)} = - \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(6 x \right)} + \sin{\left(x \right)} \cos{\left(6 x \right)}

        3. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(x)cos2(x)cos(6x))dx=sin(x)cos2(x)cos(6x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(6 x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(6 x \right)}\, dx

            1. Rewrite the integrand:

              sin(x)cos2(x)cos(6x)=32sin(x)cos8(x)48sin(x)cos6(x)+18sin(x)cos4(x)sin(x)cos2(x)\sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(6 x \right)} = 32 \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 48 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 18 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - \sin{\left(x \right)} \cos^{2}{\left(x \right)}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                32sin(x)cos8(x)dx=32sin(x)cos8(x)dx\int 32 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx = 32 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

                1. Let u=cos(x)u = \cos{\left(x \right)}.

                  Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

                  u8du\int u^{8}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                    So, the result is: u99- \frac{u^{9}}{9}

                  Now substitute uu back in:

                  cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

                So, the result is: 32cos9(x)9- \frac{32 \cos^{9}{\left(x \right)}}{9}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (48sin(x)cos6(x))dx=48sin(x)cos6(x)dx\int \left(- 48 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 48 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

                1. Let u=cos(x)u = \cos{\left(x \right)}.

                  Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

                  u6du\int u^{6}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                    So, the result is: u77- \frac{u^{7}}{7}

                  Now substitute uu back in:

                  cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

                So, the result is: 48cos7(x)7\frac{48 \cos^{7}{\left(x \right)}}{7}

              1. The integral of a constant times a function is the constant times the integral of the function:

                18sin(x)cos4(x)dx=18sin(x)cos4(x)dx\int 18 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 18 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

                1. Let u=cos(x)u = \cos{\left(x \right)}.

                  Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

                  u4du\int u^{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    So, the result is: u55- \frac{u^{5}}{5}

                  Now substitute uu back in:

                  cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

                So, the result is: 18cos5(x)5- \frac{18 \cos^{5}{\left(x \right)}}{5}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (sin(x)cos2(x))dx=sin(x)cos2(x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

                1. Let u=cos(x)u = \cos{\left(x \right)}.

                  Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

                  u2du\int u^{2}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u33- \frac{u^{3}}{3}

                  Now substitute uu back in:

                  cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

                So, the result is: cos3(x)3\frac{\cos^{3}{\left(x \right)}}{3}

              The result is: 32cos9(x)9+48cos7(x)718cos5(x)5+cos3(x)3- \frac{32 \cos^{9}{\left(x \right)}}{9} + \frac{48 \cos^{7}{\left(x \right)}}{7} - \frac{18 \cos^{5}{\left(x \right)}}{5} + \frac{\cos^{3}{\left(x \right)}}{3}

            So, the result is: 32cos9(x)948cos7(x)7+18cos5(x)5cos3(x)3\frac{32 \cos^{9}{\left(x \right)}}{9} - \frac{48 \cos^{7}{\left(x \right)}}{7} + \frac{18 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

          1. Rewrite the integrand:

            sin(x)cos(6x)=32sin(x)cos6(x)48sin(x)cos4(x)+18sin(x)cos2(x)sin(x)\sin{\left(x \right)} \cos{\left(6 x \right)} = 32 \sin{\left(x \right)} \cos^{6}{\left(x \right)} - 48 \sin{\left(x \right)} \cos^{4}{\left(x \right)} + 18 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - \sin{\left(x \right)}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              32sin(x)cos6(x)dx=32sin(x)cos6(x)dx\int 32 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx = 32 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

              1. Let u=cos(x)u = \cos{\left(x \right)}.

                Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

                u6du\int u^{6}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                  So, the result is: u77- \frac{u^{7}}{7}

                Now substitute uu back in:

                cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

              So, the result is: 32cos7(x)7- \frac{32 \cos^{7}{\left(x \right)}}{7}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (48sin(x)cos4(x))dx=48sin(x)cos4(x)dx\int \left(- 48 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 48 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

              1. Let u=cos(x)u = \cos{\left(x \right)}.

                Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

                u4du\int u^{4}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                  So, the result is: u55- \frac{u^{5}}{5}

                Now substitute uu back in:

                cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

              So, the result is: 48cos5(x)5\frac{48 \cos^{5}{\left(x \right)}}{5}

            1. The integral of a constant times a function is the constant times the integral of the function:

              18sin(x)cos2(x)dx=18sin(x)cos2(x)dx\int 18 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 18 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

              1. Let u=cos(x)u = \cos{\left(x \right)}.

                Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

                u2du\int u^{2}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u33- \frac{u^{3}}{3}

                Now substitute uu back in:

                cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

              So, the result is: 6cos3(x)- 6 \cos^{3}{\left(x \right)}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (sin(x))dx=sin(x)dx\int \left(- \sin{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)}\, dx

              1. The integral of sine is negative cosine:

                sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

              So, the result is: cos(x)\cos{\left(x \right)}

            The result is: 32cos7(x)7+48cos5(x)56cos3(x)+cos(x)- \frac{32 \cos^{7}{\left(x \right)}}{7} + \frac{48 \cos^{5}{\left(x \right)}}{5} - 6 \cos^{3}{\left(x \right)} + \cos{\left(x \right)}

          The result is: 32cos9(x)980cos7(x)7+66cos5(x)519cos3(x)3+cos(x)\frac{32 \cos^{9}{\left(x \right)}}{9} - \frac{80 \cos^{7}{\left(x \right)}}{7} + \frac{66 \cos^{5}{\left(x \right)}}{5} - \frac{19 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}

        Now evaluate the sub-integral.

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          32cos9(x)9dx=32cos9(x)dx9\int \frac{32 \cos^{9}{\left(x \right)}}{9}\, dx = \frac{32 \int \cos^{9}{\left(x \right)}\, dx}{9}

          1. Rewrite the integrand:

            cos9(x)=(1sin2(x))4cos(x)\cos^{9}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{4} \cos{\left(x \right)}

          2. Rewrite the integrand:

            (1sin2(x))4cos(x)=sin8(x)cos(x)4sin6(x)cos(x)+6sin4(x)cos(x)4sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{4} \cos{\left(x \right)} = \sin^{8}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

          3. Integrate term-by-term:

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u8du\int u^{8}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

              Now substitute uu back in:

              sin9(x)9\frac{\sin^{9}{\left(x \right)}}{9}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (4sin6(x)cos(x))dx=4sin6(x)cos(x)dx\int \left(- 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

              1. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                u6du\int u^{6}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                Now substitute uu back in:

                sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

              So, the result is: 4sin7(x)7- \frac{4 \sin^{7}{\left(x \right)}}{7}

            1. The integral of a constant times a function is the constant times the integral of the function:

              6sin4(x)cos(x)dx=6sin4(x)cos(x)dx\int 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 6 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

              1. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                u4du\int u^{4}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                Now substitute uu back in:

                sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

              So, the result is: 6sin5(x)5\frac{6 \sin^{5}{\left(x \right)}}{5}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (4sin2(x)cos(x))dx=4sin2(x)cos(x)dx\int \left(- 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

              1. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                u2du\int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                Now substitute uu back in:

                sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

              So, the result is: 4sin3(x)3- \frac{4 \sin^{3}{\left(x \right)}}{3}

            1. The integral of cosine is sine:

              cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

            The result is: sin9(x)94sin7(x)7+6sin5(x)54sin3(x)3+sin(x)\frac{\sin^{9}{\left(x \right)}}{9} - \frac{4 \sin^{7}{\left(x \right)}}{7} + \frac{6 \sin^{5}{\left(x \right)}}{5} - \frac{4 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

          So, the result is: 32sin9(x)81128sin7(x)63+64sin5(x)15128sin3(x)27+32sin(x)9\frac{32 \sin^{9}{\left(x \right)}}{81} - \frac{128 \sin^{7}{\left(x \right)}}{63} + \frac{64 \sin^{5}{\left(x \right)}}{15} - \frac{128 \sin^{3}{\left(x \right)}}{27} + \frac{32 \sin{\left(x \right)}}{9}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (80cos7(x)7)dx=80cos7(x)dx7\int \left(- \frac{80 \cos^{7}{\left(x \right)}}{7}\right)\, dx = - \frac{80 \int \cos^{7}{\left(x \right)}\, dx}{7}

          1. Rewrite the integrand:

            cos7(x)=(1sin2(x))3cos(x)\cos^{7}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)}

          2. Rewrite the integrand:

            (1sin2(x))3cos(x)=sin6(x)cos(x)+3sin4(x)cos(x)3sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

          3. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

              1. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                u6du\int u^{6}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                Now substitute uu back in:

                sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

              So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

            1. The integral of a constant times a function is the constant times the integral of the function:

              3sin4(x)cos(x)dx=3sin4(x)cos(x)dx\int 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 3 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

              1. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                u4du\int u^{4}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                Now substitute uu back in:

                sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

              So, the result is: 3sin5(x)5\frac{3 \sin^{5}{\left(x \right)}}{5}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (3sin2(x)cos(x))dx=3sin2(x)cos(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

              1. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                u2du\int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                Now substitute uu back in:

                sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

              So, the result is: sin3(x)- \sin^{3}{\left(x \right)}

            1. The integral of cosine is sine:

              cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

            The result is: sin7(x)7+3sin5(x)5sin3(x)+sin(x)- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{3 \sin^{5}{\left(x \right)}}{5} - \sin^{3}{\left(x \right)} + \sin{\left(x \right)}

          So, the result is: 80sin7(x)4948sin5(x)7+80sin3(x)780sin(x)7\frac{80 \sin^{7}{\left(x \right)}}{49} - \frac{48 \sin^{5}{\left(x \right)}}{7} + \frac{80 \sin^{3}{\left(x \right)}}{7} - \frac{80 \sin{\left(x \right)}}{7}

        1. The integral of a constant times a function is the constant times the integral of the function:

          66cos5(x)5dx=66cos5(x)dx5\int \frac{66 \cos^{5}{\left(x \right)}}{5}\, dx = \frac{66 \int \cos^{5}{\left(x \right)}\, dx}{5}

          1. Rewrite the integrand:

            cos5(x)=(1sin2(x))2cos(x)\cos^{5}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)}

          2. Rewrite the integrand:

            (1sin2(x))2cos(x)=sin4(x)cos(x)2sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} = \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

          3. Integrate term-by-term:

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u4du\int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              Now substitute uu back in:

              sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (2sin2(x)cos(x))dx=2sin2(x)cos(x)dx\int \left(- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 2 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

              1. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                u2du\int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                Now substitute uu back in:

                sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

              So, the result is: 2sin3(x)3- \frac{2 \sin^{3}{\left(x \right)}}{3}

            1. The integral of cosine is sine:

              cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

            The result is: sin5(x)52sin3(x)3+sin(x)\frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

          So, the result is: 66sin5(x)2544sin3(x)5+66sin(x)5\frac{66 \sin^{5}{\left(x \right)}}{25} - \frac{44 \sin^{3}{\left(x \right)}}{5} + \frac{66 \sin{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (19cos3(x)3)dx=19cos3(x)dx3\int \left(- \frac{19 \cos^{3}{\left(x \right)}}{3}\right)\, dx = - \frac{19 \int \cos^{3}{\left(x \right)}\, dx}{3}

          1. Rewrite the integrand:

            cos3(x)=(1sin2(x))cos(x)\cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

          2. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            (1u2)du\int \left(1 - u^{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u33- \frac{u^{3}}{3}

              The result is: u33+u- \frac{u^{3}}{3} + u

            Now substitute uu back in:

            sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

          So, the result is: 19sin3(x)919sin(x)3\frac{19 \sin^{3}{\left(x \right)}}{9} - \frac{19 \sin{\left(x \right)}}{3}

        1. The integral of cosine is sine:

          cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

        The result is: 32sin9(x)81176sin7(x)441+26sin5(x)525sin3(x)9452sin(x)315\frac{32 \sin^{9}{\left(x \right)}}{81} - \frac{176 \sin^{7}{\left(x \right)}}{441} + \frac{26 \sin^{5}{\left(x \right)}}{525} - \frac{\sin^{3}{\left(x \right)}}{945} - \frac{2 \sin{\left(x \right)}}{315}

      Method #2

      1. Rewrite the integrand:

        xsin3(x)cos(6x)=32xsin3(x)cos6(x)48xsin3(x)cos4(x)+18xsin3(x)cos2(x)xsin3(x)x \sin^{3}{\left(x \right)} \cos{\left(6 x \right)} = 32 x \sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)} - 48 x \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} + 18 x \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} - x \sin^{3}{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          32xsin3(x)cos6(x)dx=32xsin3(x)cos6(x)dx\int 32 x \sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)}\, dx = 32 \int x \sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin3(x)cos6(x)\operatorname{dv}{\left(x \right)} = \sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)}.

            Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

            To find v(x)v{\left(x \right)}:

            1. Rewrite the integrand:

              sin3(x)cos6(x)=(1cos2(x))sin(x)cos6(x)\sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{6}{\left(x \right)}

            2. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

              (u8u6)du\int \left(u^{8} - u^{6}\right)\, du

              1. Integrate term-by-term:

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                  So, the result is: u77- \frac{u^{7}}{7}

                The result is: u99u77\frac{u^{9}}{9} - \frac{u^{7}}{7}

              Now substitute uu back in:

              cos9(x)9cos7(x)7\frac{\cos^{9}{\left(x \right)}}{9} - \frac{\cos^{7}{\left(x \right)}}{7}

            Now evaluate the sub-integral.

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos9(x)9dx=cos9(x)dx9\int \frac{\cos^{9}{\left(x \right)}}{9}\, dx = \frac{\int \cos^{9}{\left(x \right)}\, dx}{9}

              1. Rewrite the integrand:

                cos9(x)=(1sin2(x))4cos(x)\cos^{9}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{4} \cos{\left(x \right)}

              2. Rewrite the integrand:

                (1sin2(x))4cos(x)=sin8(x)cos(x)4sin6(x)cos(x)+6sin4(x)cos(x)4sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{4} \cos{\left(x \right)} = \sin^{8}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

              3. Integrate term-by-term:

                1. Let u=sin(x)u = \sin{\left(x \right)}.

                  Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                  u8du\int u^{8}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                  Now substitute uu back in:

                  sin9(x)9\frac{\sin^{9}{\left(x \right)}}{9}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (4sin6(x)cos(x))dx=4sin6(x)cos(x)dx\int \left(- 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u6du\int u^{6}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                    Now substitute uu back in:

                    sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

                  So, the result is: 4sin7(x)7- \frac{4 \sin^{7}{\left(x \right)}}{7}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  6sin4(x)cos(x)dx=6sin4(x)cos(x)dx\int 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 6 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u4du\int u^{4}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    Now substitute uu back in:

                    sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

                  So, the result is: 6sin5(x)5\frac{6 \sin^{5}{\left(x \right)}}{5}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (4sin2(x)cos(x))dx=4sin2(x)cos(x)dx\int \left(- 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

                  So, the result is: 4sin3(x)3- \frac{4 \sin^{3}{\left(x \right)}}{3}

                1. The integral of cosine is sine:

                  cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

                The result is: sin9(x)94sin7(x)7+6sin5(x)54sin3(x)3+sin(x)\frac{\sin^{9}{\left(x \right)}}{9} - \frac{4 \sin^{7}{\left(x \right)}}{7} + \frac{6 \sin^{5}{\left(x \right)}}{5} - \frac{4 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

              So, the result is: sin9(x)814sin7(x)63+2sin5(x)154sin3(x)27+sin(x)9\frac{\sin^{9}{\left(x \right)}}{81} - \frac{4 \sin^{7}{\left(x \right)}}{63} + \frac{2 \sin^{5}{\left(x \right)}}{15} - \frac{4 \sin^{3}{\left(x \right)}}{27} + \frac{\sin{\left(x \right)}}{9}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos7(x)7)dx=cos7(x)dx7\int \left(- \frac{\cos^{7}{\left(x \right)}}{7}\right)\, dx = - \frac{\int \cos^{7}{\left(x \right)}\, dx}{7}

              1. Rewrite the integrand:

                cos7(x)=(1sin2(x))3cos(x)\cos^{7}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)}

              2. Rewrite the integrand:

                (1sin2(x))3cos(x)=sin6(x)cos(x)+3sin4(x)cos(x)3sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

              3. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u6du\int u^{6}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                    Now substitute uu back in:

                    sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

                  So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  3sin4(x)cos(x)dx=3sin4(x)cos(x)dx\int 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 3 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u4du\int u^{4}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    Now substitute uu back in:

                    sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

                  So, the result is: 3sin5(x)5\frac{3 \sin^{5}{\left(x \right)}}{5}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (3sin2(x)cos(x))dx=3sin2(x)cos(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

                  So, the result is: sin3(x)- \sin^{3}{\left(x \right)}

                1. The integral of cosine is sine:

                  cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

                The result is: sin7(x)7+3sin5(x)5sin3(x)+sin(x)- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{3 \sin^{5}{\left(x \right)}}{5} - \sin^{3}{\left(x \right)} + \sin{\left(x \right)}

              So, the result is: sin7(x)493sin5(x)35+sin3(x)7sin(x)7\frac{\sin^{7}{\left(x \right)}}{49} - \frac{3 \sin^{5}{\left(x \right)}}{35} + \frac{\sin^{3}{\left(x \right)}}{7} - \frac{\sin{\left(x \right)}}{7}

            The result is: sin9(x)8119sin7(x)441+sin5(x)21sin3(x)1892sin(x)63\frac{\sin^{9}{\left(x \right)}}{81} - \frac{19 \sin^{7}{\left(x \right)}}{441} + \frac{\sin^{5}{\left(x \right)}}{21} - \frac{\sin^{3}{\left(x \right)}}{189} - \frac{2 \sin{\left(x \right)}}{63}

          So, the result is: 32x(cos9(x)9cos7(x)7)32sin9(x)81+608sin7(x)44132sin5(x)21+32sin3(x)189+64sin(x)6332 x \left(\frac{\cos^{9}{\left(x \right)}}{9} - \frac{\cos^{7}{\left(x \right)}}{7}\right) - \frac{32 \sin^{9}{\left(x \right)}}{81} + \frac{608 \sin^{7}{\left(x \right)}}{441} - \frac{32 \sin^{5}{\left(x \right)}}{21} + \frac{32 \sin^{3}{\left(x \right)}}{189} + \frac{64 \sin{\left(x \right)}}{63}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (48xsin3(x)cos4(x))dx=48xsin3(x)cos4(x)dx\int \left(- 48 x \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 48 \int x \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin3(x)cos4(x)\operatorname{dv}{\left(x \right)} = \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}.

            Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

            To find v(x)v{\left(x \right)}:

            1. Rewrite the integrand:

              sin3(x)cos4(x)=(1cos2(x))sin(x)cos4(x)\sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{4}{\left(x \right)}

            2. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

              (u6u4)du\int \left(u^{6} - u^{4}\right)\, du

              1. Integrate term-by-term:

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                  So, the result is: u55- \frac{u^{5}}{5}

                The result is: u77u55\frac{u^{7}}{7} - \frac{u^{5}}{5}

              Now substitute uu back in:

              cos7(x)7cos5(x)5\frac{\cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

            Now evaluate the sub-integral.

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos7(x)7dx=cos7(x)dx7\int \frac{\cos^{7}{\left(x \right)}}{7}\, dx = \frac{\int \cos^{7}{\left(x \right)}\, dx}{7}

              1. Rewrite the integrand:

                cos7(x)=(1sin2(x))3cos(x)\cos^{7}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)}

              2. Rewrite the integrand:

                (1sin2(x))3cos(x)=sin6(x)cos(x)+3sin4(x)cos(x)3sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

              3. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u6du\int u^{6}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                    Now substitute uu back in:

                    sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

                  So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  3sin4(x)cos(x)dx=3sin4(x)cos(x)dx\int 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 3 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u4du\int u^{4}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    Now substitute uu back in:

                    sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

                  So, the result is: 3sin5(x)5\frac{3 \sin^{5}{\left(x \right)}}{5}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (3sin2(x)cos(x))dx=3sin2(x)cos(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

                  So, the result is: sin3(x)- \sin^{3}{\left(x \right)}

                1. The integral of cosine is sine:

                  cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

                The result is: sin7(x)7+3sin5(x)5sin3(x)+sin(x)- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{3 \sin^{5}{\left(x \right)}}{5} - \sin^{3}{\left(x \right)} + \sin{\left(x \right)}

              So, the result is: sin7(x)49+3sin5(x)35sin3(x)7+sin(x)7- \frac{\sin^{7}{\left(x \right)}}{49} + \frac{3 \sin^{5}{\left(x \right)}}{35} - \frac{\sin^{3}{\left(x \right)}}{7} + \frac{\sin{\left(x \right)}}{7}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos5(x)5)dx=cos5(x)dx5\int \left(- \frac{\cos^{5}{\left(x \right)}}{5}\right)\, dx = - \frac{\int \cos^{5}{\left(x \right)}\, dx}{5}

              1. Rewrite the integrand:

                cos5(x)=(1sin2(x))2cos(x)\cos^{5}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)}

              2. Rewrite the integrand:

                (1sin2(x))2cos(x)=sin4(x)cos(x)2sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} = \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

              3. Integrate term-by-term:

                1. Let u=sin(x)u = \sin{\left(x \right)}.

                  Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                  u4du\int u^{4}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                  Now substitute uu back in:

                  sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (2sin2(x)cos(x))dx=2sin2(x)cos(x)dx\int \left(- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 2 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

                  So, the result is: 2sin3(x)3- \frac{2 \sin^{3}{\left(x \right)}}{3}

                1. The integral of cosine is sine:

                  cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

                The result is: sin5(x)52sin3(x)3+sin(x)\frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

              So, the result is: sin5(x)25+2sin3(x)15sin(x)5- \frac{\sin^{5}{\left(x \right)}}{25} + \frac{2 \sin^{3}{\left(x \right)}}{15} - \frac{\sin{\left(x \right)}}{5}

            The result is: sin7(x)49+8sin5(x)175sin3(x)1052sin(x)35- \frac{\sin^{7}{\left(x \right)}}{49} + \frac{8 \sin^{5}{\left(x \right)}}{175} - \frac{\sin^{3}{\left(x \right)}}{105} - \frac{2 \sin{\left(x \right)}}{35}

          So, the result is: 48x(cos7(x)7cos5(x)5)48sin7(x)49+384sin5(x)17516sin3(x)3596sin(x)35- 48 x \left(\frac{\cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}\right) - \frac{48 \sin^{7}{\left(x \right)}}{49} + \frac{384 \sin^{5}{\left(x \right)}}{175} - \frac{16 \sin^{3}{\left(x \right)}}{35} - \frac{96 \sin{\left(x \right)}}{35}

        1. The integral of a constant times a function is the constant times the integral of the function:

          18xsin3(x)cos2(x)dx=18xsin3(x)cos2(x)dx\int 18 x \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 18 \int x \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin3(x)cos2(x)\operatorname{dv}{\left(x \right)} = \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}.

            Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

            To find v(x)v{\left(x \right)}:

            1. Rewrite the integrand:

              sin3(x)cos2(x)=(1cos2(x))sin(x)cos2(x)\sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)}

            2. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

              (u4u2)du\int \left(u^{4} - u^{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u33- \frac{u^{3}}{3}

                The result is: u55u33\frac{u^{5}}{5} - \frac{u^{3}}{3}

              Now substitute uu back in:

              cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

            Now evaluate the sub-integral.

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos5(x)5dx=cos5(x)dx5\int \frac{\cos^{5}{\left(x \right)}}{5}\, dx = \frac{\int \cos^{5}{\left(x \right)}\, dx}{5}

              1. Rewrite the integrand:

                cos5(x)=(1sin2(x))2cos(x)\cos^{5}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)}

              2. Rewrite the integrand:

                (1sin2(x))2cos(x)=sin4(x)cos(x)2sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} = \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

              3. Integrate term-by-term:

                1. Let u=sin(x)u = \sin{\left(x \right)}.

                  Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                  u4du\int u^{4}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                  Now substitute uu back in:

                  sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (2sin2(x)cos(x))dx=2sin2(x)cos(x)dx\int \left(- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 2 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

                  1. Let u=sin(x)u = \sin{\left(x \right)}.

                    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

                  So, the result is: 2sin3(x)3- \frac{2 \sin^{3}{\left(x \right)}}{3}

                1. The integral of cosine is sine:

                  cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

                The result is: sin5(x)52sin3(x)3+sin(x)\frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

              So, the result is: sin5(x)252sin3(x)15+sin(x)5\frac{\sin^{5}{\left(x \right)}}{25} - \frac{2 \sin^{3}{\left(x \right)}}{15} + \frac{\sin{\left(x \right)}}{5}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos3(x)3)dx=cos3(x)dx3\int \left(- \frac{\cos^{3}{\left(x \right)}}{3}\right)\, dx = - \frac{\int \cos^{3}{\left(x \right)}\, dx}{3}

              1. Rewrite the integrand:

                cos3(x)=(1sin2(x))cos(x)\cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

              2. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                (1u2)du\int \left(1 - u^{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant is the constant times the variable of integration:

                    1du=u\int 1\, du = u

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u33- \frac{u^{3}}{3}

                  The result is: u33+u- \frac{u^{3}}{3} + u

                Now substitute uu back in:

                sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

              So, the result is: sin3(x)9sin(x)3\frac{\sin^{3}{\left(x \right)}}{9} - \frac{\sin{\left(x \right)}}{3}

            The result is: sin5(x)25sin3(x)452sin(x)15\frac{\sin^{5}{\left(x \right)}}{25} - \frac{\sin^{3}{\left(x \right)}}{45} - \frac{2 \sin{\left(x \right)}}{15}

          So, the result is: 18x(cos5(x)5cos3(x)3)18sin5(x)25+2sin3(x)5+12sin(x)518 x \left(\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}\right) - \frac{18 \sin^{5}{\left(x \right)}}{25} + \frac{2 \sin^{3}{\left(x \right)}}{5} + \frac{12 \sin{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (xsin3(x))dx=xsin3(x)dx\int \left(- x \sin^{3}{\left(x \right)}\right)\, dx = - \int x \sin^{3}{\left(x \right)}\, dx

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin3(x)\operatorname{dv}{\left(x \right)} = \sin^{3}{\left(x \right)}.

            Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

            To find v(x)v{\left(x \right)}:

            1. Rewrite the integrand:

              sin3(x)=(1cos2(x))sin(x)\sin^{3}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

            2. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

              (u21)du\int \left(u^{2} - 1\right)\, du

              1. Integrate term-by-term:

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                1. The integral of a constant is the constant times the variable of integration:

                  (1)du=u\int \left(-1\right)\, du = - u

                The result is: u33u\frac{u^{3}}{3} - u

              Now substitute uu back in:

              cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

            Now evaluate the sub-integral.

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos3(x)3dx=cos3(x)dx3\int \frac{\cos^{3}{\left(x \right)}}{3}\, dx = \frac{\int \cos^{3}{\left(x \right)}\, dx}{3}

              1. Rewrite the integrand:

                cos3(x)=(1sin2(x))cos(x)\cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

              2. Let u=sin(x)u = \sin{\left(x \right)}.

                Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

                (1u2)du\int \left(1 - u^{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant is the constant times the variable of integration:

                    1du=u\int 1\, du = u

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u33- \frac{u^{3}}{3}

                  The result is: u33+u- \frac{u^{3}}{3} + u

                Now substitute uu back in:

                sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

              So, the result is: sin3(x)9+sin(x)3- \frac{\sin^{3}{\left(x \right)}}{9} + \frac{\sin{\left(x \right)}}{3}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos(x))dx=cos(x)dx\int \left(- \cos{\left(x \right)}\right)\, dx = - \int \cos{\left(x \right)}\, dx

              1. The integral of cosine is sine:

                cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

              So, the result is: sin(x)- \sin{\left(x \right)}

            The result is: sin3(x)92sin(x)3- \frac{\sin^{3}{\left(x \right)}}{9} - \frac{2 \sin{\left(x \right)}}{3}

          So, the result is: x(cos3(x)3cos(x))sin3(x)92sin(x)3- x \left(\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}\right) - \frac{\sin^{3}{\left(x \right)}}{9} - \frac{2 \sin{\left(x \right)}}{3}

        The result is: x(cos3(x)3cos(x))+18x(cos5(x)5cos3(x)3)48x(cos7(x)7cos5(x)5)+32x(cos9(x)9cos7(x)7)32sin9(x)81+176sin7(x)44126sin5(x)525+sin3(x)945+2sin(x)315- x \left(\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}\right) + 18 x \left(\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}\right) - 48 x \left(\frac{\cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}\right) + 32 x \left(\frac{\cos^{9}{\left(x \right)}}{9} - \frac{\cos^{7}{\left(x \right)}}{7}\right) - \frac{32 \sin^{9}{\left(x \right)}}{81} + \frac{176 \sin^{7}{\left(x \right)}}{441} - \frac{26 \sin^{5}{\left(x \right)}}{525} + \frac{\sin^{3}{\left(x \right)}}{945} + \frac{2 \sin{\left(x \right)}}{315}

    So, the result is: 6x(32cos9(x)980cos7(x)7+66cos5(x)519cos3(x)3+cos(x))64sin9(x)27+352sin7(x)14752sin5(x)175+2sin3(x)315+4sin(x)1056 x \left(\frac{32 \cos^{9}{\left(x \right)}}{9} - \frac{80 \cos^{7}{\left(x \right)}}{7} + \frac{66 \cos^{5}{\left(x \right)}}{5} - \frac{19 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}\right) - \frac{64 \sin^{9}{\left(x \right)}}{27} + \frac{352 \sin^{7}{\left(x \right)}}{147} - \frac{52 \sin^{5}{\left(x \right)}}{175} + \frac{2 \sin^{3}{\left(x \right)}}{315} + \frac{4 \sin{\left(x \right)}}{105}

  2. Now simplify:

    2x(1120cos8(x)3600cos6(x)+4158cos4(x)1995cos2(x)+315)cos(x)10564sin9(x)27+352sin7(x)14752sin5(x)175+2sin3(x)315+4sin(x)105\frac{2 x \left(1120 \cos^{8}{\left(x \right)} - 3600 \cos^{6}{\left(x \right)} + 4158 \cos^{4}{\left(x \right)} - 1995 \cos^{2}{\left(x \right)} + 315\right) \cos{\left(x \right)}}{105} - \frac{64 \sin^{9}{\left(x \right)}}{27} + \frac{352 \sin^{7}{\left(x \right)}}{147} - \frac{52 \sin^{5}{\left(x \right)}}{175} + \frac{2 \sin^{3}{\left(x \right)}}{315} + \frac{4 \sin{\left(x \right)}}{105}

  3. Add the constant of integration:

    2x(1120cos8(x)3600cos6(x)+4158cos4(x)1995cos2(x)+315)cos(x)10564sin9(x)27+352sin7(x)14752sin5(x)175+2sin3(x)315+4sin(x)105+constant\frac{2 x \left(1120 \cos^{8}{\left(x \right)} - 3600 \cos^{6}{\left(x \right)} + 4158 \cos^{4}{\left(x \right)} - 1995 \cos^{2}{\left(x \right)} + 315\right) \cos{\left(x \right)}}{105} - \frac{64 \sin^{9}{\left(x \right)}}{27} + \frac{352 \sin^{7}{\left(x \right)}}{147} - \frac{52 \sin^{5}{\left(x \right)}}{175} + \frac{2 \sin^{3}{\left(x \right)}}{315} + \frac{4 \sin{\left(x \right)}}{105}+ \mathrm{constant}


The answer is:

2x(1120cos8(x)3600cos6(x)+4158cos4(x)1995cos2(x)+315)cos(x)10564sin9(x)27+352sin7(x)14752sin5(x)175+2sin3(x)315+4sin(x)105+constant\frac{2 x \left(1120 \cos^{8}{\left(x \right)} - 3600 \cos^{6}{\left(x \right)} + 4158 \cos^{4}{\left(x \right)} - 1995 \cos^{2}{\left(x \right)} + 315\right) \cos{\left(x \right)}}{105} - \frac{64 \sin^{9}{\left(x \right)}}{27} + \frac{352 \sin^{7}{\left(x \right)}}{147} - \frac{52 \sin^{5}{\left(x \right)}}{175} + \frac{2 \sin^{3}{\left(x \right)}}{315} + \frac{4 \sin{\left(x \right)}}{105}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                                                                               
 |                                     9            5           3                        7          /        7            3            9            5            \
 |    3                          64*sin (x)   52*sin (x)   2*sin (x)   4*sin(x)   352*sin (x)       |  80*cos (x)   19*cos (x)   32*cos (x)   66*cos (x)         |
 | sin (x)*6*x*cos(6*x) dx = C - ---------- - ---------- + --------- + -------- + ----------- + 6*x*|- ---------- - ---------- + ---------- + ---------- + cos(x)|
 |                                   27          175          315        105          147           \      7            3            9            5              /
/                                                                                                                                                                 
1225sin(9x)11025xcos(9x)6075sin(7x)+42525xcos(7x)+11907sin(5x)59535xcos(5x)11025sin(3x)+33075xcos(3x)132300-{{1225\,\sin \left(9\,x\right)-11025\,x\,\cos \left(9\,x\right)- 6075\,\sin \left(7\,x\right)+42525\,x\,\cos \left(7\,x\right)+11907 \,\sin \left(5\,x\right)-59535\,x\,\cos \left(5\,x\right)-11025\, \sin \left(3\,x\right)+33075\,x\,\cos \left(3\,x\right)}\over{132300 }}
The answer [src]
0
00
=
=
0
00
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.