Integral of (sin^3)*((6x)*cos6x) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin3(x)6xcos(6x)dx=6∫xsin3(x)cos(6x)dx
-
There are multiple ways to do this integral.
Method #1
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin3(x)cos(6x).
Then du(x)=1.
To find v(x):
-
Rewrite the integrand:
sin3(x)cos(6x)=(1−cos2(x))sin(x)cos(6x)
-
Rewrite the integrand:
(1−cos2(x))sin(x)cos(6x)=−sin(x)cos2(x)cos(6x)+sin(x)cos(6x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos2(x)cos(6x))dx=−∫sin(x)cos2(x)cos(6x)dx
-
Rewrite the integrand:
sin(x)cos2(x)cos(6x)=32sin(x)cos8(x)−48sin(x)cos6(x)+18sin(x)cos4(x)−sin(x)cos2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫32sin(x)cos8(x)dx=32∫sin(x)cos8(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u8du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u8)du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
Now substitute u back in:
−9cos9(x)
So, the result is: −932cos9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−48sin(x)cos6(x))dx=−48∫sin(x)cos6(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u6du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
So, the result is: 748cos7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫18sin(x)cos4(x)dx=18∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: −518cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos2(x))dx=−∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: 3cos3(x)
The result is: −932cos9(x)+748cos7(x)−518cos5(x)+3cos3(x)
So, the result is: 932cos9(x)−748cos7(x)+518cos5(x)−3cos3(x)
-
Rewrite the integrand:
sin(x)cos(6x)=32sin(x)cos6(x)−48sin(x)cos4(x)+18sin(x)cos2(x)−sin(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫32sin(x)cos6(x)dx=32∫sin(x)cos6(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u6du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
So, the result is: −732cos7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−48sin(x)cos4(x))dx=−48∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: 548cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫18sin(x)cos2(x)dx=18∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: −6cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x))dx=−∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: cos(x)
The result is: −732cos7(x)+548cos5(x)−6cos3(x)+cos(x)
The result is: 932cos9(x)−780cos7(x)+566cos5(x)−319cos3(x)+cos(x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫932cos9(x)dx=932∫cos9(x)dx
-
Rewrite the integrand:
cos9(x)=(1−sin2(x))4cos(x)
-
Rewrite the integrand:
(1−sin2(x))4cos(x)=sin8(x)cos(x)−4sin6(x)cos(x)+6sin4(x)cos(x)−4sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9sin9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin6(x)cos(x))dx=−4∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −74sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6sin4(x)cos(x)dx=6∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 56sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin2(x)cos(x))dx=−4∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −34sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 9sin9(x)−74sin7(x)+56sin5(x)−34sin3(x)+sin(x)
So, the result is: 8132sin9(x)−63128sin7(x)+1564sin5(x)−27128sin3(x)+932sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−780cos7(x))dx=−780∫cos7(x)dx
-
Rewrite the integrand:
cos7(x)=(1−sin2(x))3cos(x)
-
Rewrite the integrand:
(1−sin2(x))3cos(x)=−sin6(x)cos(x)+3sin4(x)cos(x)−3sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin6(x)cos(x))dx=−∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −7sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin4(x)cos(x)dx=3∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 53sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin2(x)cos(x))dx=−3∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −7sin7(x)+53sin5(x)−sin3(x)+sin(x)
So, the result is: 4980sin7(x)−748sin5(x)+780sin3(x)−780sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫566cos5(x)dx=566∫cos5(x)dx
-
Rewrite the integrand:
cos5(x)=(1−sin2(x))2cos(x)
-
Rewrite the integrand:
(1−sin2(x))2cos(x)=sin4(x)cos(x)−2sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(x)cos(x))dx=−2∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −32sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 5sin5(x)−32sin3(x)+sin(x)
So, the result is: 2566sin5(x)−544sin3(x)+566sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−319cos3(x))dx=−319∫cos3(x)dx
-
Rewrite the integrand:
cos3(x)=(1−sin2(x))cos(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(1−u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: −3u3+u
Now substitute u back in:
−3sin3(x)+sin(x)
So, the result is: 919sin3(x)−319sin(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 8132sin9(x)−441176sin7(x)+52526sin5(x)−945sin3(x)−3152sin(x)
Method #2
-
Rewrite the integrand:
xsin3(x)cos(6x)=32xsin3(x)cos6(x)−48xsin3(x)cos4(x)+18xsin3(x)cos2(x)−xsin3(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫32xsin3(x)cos6(x)dx=32∫xsin3(x)cos6(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin3(x)cos6(x).
Then du(x)=1.
To find v(x):
-
Rewrite the integrand:
sin3(x)cos6(x)=(1−cos2(x))sin(x)cos6(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u8−u6)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
The result is: 9u9−7u7
Now substitute u back in:
9cos9(x)−7cos7(x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫9cos9(x)dx=9∫cos9(x)dx
-
Rewrite the integrand:
cos9(x)=(1−sin2(x))4cos(x)
-
Rewrite the integrand:
(1−sin2(x))4cos(x)=sin8(x)cos(x)−4sin6(x)cos(x)+6sin4(x)cos(x)−4sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9sin9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin6(x)cos(x))dx=−4∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −74sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6sin4(x)cos(x)dx=6∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 56sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin2(x)cos(x))dx=−4∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −34sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 9sin9(x)−74sin7(x)+56sin5(x)−34sin3(x)+sin(x)
So, the result is: 81sin9(x)−634sin7(x)+152sin5(x)−274sin3(x)+9sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−7cos7(x))dx=−7∫cos7(x)dx
-
Rewrite the integrand:
cos7(x)=(1−sin2(x))3cos(x)
-
Rewrite the integrand:
(1−sin2(x))3cos(x)=−sin6(x)cos(x)+3sin4(x)cos(x)−3sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin6(x)cos(x))dx=−∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −7sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin4(x)cos(x)dx=3∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 53sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin2(x)cos(x))dx=−3∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −7sin7(x)+53sin5(x)−sin3(x)+sin(x)
So, the result is: 49sin7(x)−353sin5(x)+7sin3(x)−7sin(x)
The result is: 81sin9(x)−44119sin7(x)+21sin5(x)−189sin3(x)−632sin(x)
So, the result is: 32x(9cos9(x)−7cos7(x))−8132sin9(x)+441608sin7(x)−2132sin5(x)+18932sin3(x)+6364sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−48xsin3(x)cos4(x))dx=−48∫xsin3(x)cos4(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin3(x)cos4(x).
Then du(x)=1.
To find v(x):
-
Rewrite the integrand:
sin3(x)cos4(x)=(1−cos2(x))sin(x)cos4(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u6−u4)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
The result is: 7u7−5u5
Now substitute u back in:
7cos7(x)−5cos5(x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫7cos7(x)dx=7∫cos7(x)dx
-
Rewrite the integrand:
cos7(x)=(1−sin2(x))3cos(x)
-
Rewrite the integrand:
(1−sin2(x))3cos(x)=−sin6(x)cos(x)+3sin4(x)cos(x)−3sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin6(x)cos(x))dx=−∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −7sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin4(x)cos(x)dx=3∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 53sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin2(x)cos(x))dx=−3∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −7sin7(x)+53sin5(x)−sin3(x)+sin(x)
So, the result is: −49sin7(x)+353sin5(x)−7sin3(x)+7sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−5cos5(x))dx=−5∫cos5(x)dx
-
Rewrite the integrand:
cos5(x)=(1−sin2(x))2cos(x)
-
Rewrite the integrand:
(1−sin2(x))2cos(x)=sin4(x)cos(x)−2sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(x)cos(x))dx=−2∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −32sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 5sin5(x)−32sin3(x)+sin(x)
So, the result is: −25sin5(x)+152sin3(x)−5sin(x)
The result is: −49sin7(x)+1758sin5(x)−105sin3(x)−352sin(x)
So, the result is: −48x(7cos7(x)−5cos5(x))−4948sin7(x)+175384sin5(x)−3516sin3(x)−3596sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫18xsin3(x)cos2(x)dx=18∫xsin3(x)cos2(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin3(x)cos2(x).
Then du(x)=1.
To find v(x):
-
Rewrite the integrand:
sin3(x)cos2(x)=(1−cos2(x))sin(x)cos2(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u4−u2)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: 5u5−3u3
Now substitute u back in:
5cos5(x)−3cos3(x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫5cos5(x)dx=5∫cos5(x)dx
-
Rewrite the integrand:
cos5(x)=(1−sin2(x))2cos(x)
-
Rewrite the integrand:
(1−sin2(x))2cos(x)=sin4(x)cos(x)−2sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(x)cos(x))dx=−2∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −32sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 5sin5(x)−32sin3(x)+sin(x)
So, the result is: 25sin5(x)−152sin3(x)+5sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3cos3(x))dx=−3∫cos3(x)dx
-
Rewrite the integrand:
cos3(x)=(1−sin2(x))cos(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(1−u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: −3u3+u
Now substitute u back in:
−3sin3(x)+sin(x)
So, the result is: 9sin3(x)−3sin(x)
The result is: 25sin5(x)−45sin3(x)−152sin(x)
So, the result is: 18x(5cos5(x)−3cos3(x))−2518sin5(x)+52sin3(x)+512sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−xsin3(x))dx=−∫xsin3(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin3(x).
Then du(x)=1.
To find v(x):
-
Rewrite the integrand:
sin3(x)=(1−cos2(x))sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u2−1)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
-
The integral of a constant is the constant times the variable of integration:
∫(−1)du=−u
The result is: 3u3−u
Now substitute u back in:
3cos3(x)−cos(x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3cos3(x)dx=3∫cos3(x)dx
-
Rewrite the integrand:
cos3(x)=(1−sin2(x))cos(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(1−u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: −3u3+u
Now substitute u back in:
−3sin3(x)+sin(x)
So, the result is: −9sin3(x)+3sin(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(x))dx=−∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: −sin(x)
The result is: −9sin3(x)−32sin(x)
So, the result is: −x(3cos3(x)−cos(x))−9sin3(x)−32sin(x)
The result is: −x(3cos3(x)−cos(x))+18x(5cos5(x)−3cos3(x))−48x(7cos7(x)−5cos5(x))+32x(9cos9(x)−7cos7(x))−8132sin9(x)+441176sin7(x)−52526sin5(x)+945sin3(x)+3152sin(x)
So, the result is: 6x(932cos9(x)−780cos7(x)+566cos5(x)−319cos3(x)+cos(x))−2764sin9(x)+147352sin7(x)−17552sin5(x)+3152sin3(x)+1054sin(x)
-
Now simplify:
1052x(1120cos8(x)−3600cos6(x)+4158cos4(x)−1995cos2(x)+315)cos(x)−2764sin9(x)+147352sin7(x)−17552sin5(x)+3152sin3(x)+1054sin(x)
-
Add the constant of integration:
1052x(1120cos8(x)−3600cos6(x)+4158cos4(x)−1995cos2(x)+315)cos(x)−2764sin9(x)+147352sin7(x)−17552sin5(x)+3152sin3(x)+1054sin(x)+constant
The answer is:
1052x(1120cos8(x)−3600cos6(x)+4158cos4(x)−1995cos2(x)+315)cos(x)−2764sin9(x)+147352sin7(x)−17552sin5(x)+3152sin3(x)+1054sin(x)+constant
The answer (Indefinite)
[src]
/
| 9 5 3 7 / 7 3 9 5 \
| 3 64*sin (x) 52*sin (x) 2*sin (x) 4*sin(x) 352*sin (x) | 80*cos (x) 19*cos (x) 32*cos (x) 66*cos (x) |
| sin (x)*6*x*cos(6*x) dx = C - ---------- - ---------- + --------- + -------- + ----------- + 6*x*|- ---------- - ---------- + ---------- + ---------- + cos(x)|
| 27 175 315 105 147 \ 7 3 9 5 /
/
−1323001225sin(9x)−11025xcos(9x)−6075sin(7x)+42525xcos(7x)+11907sin(5x)−59535xcos(5x)−11025sin(3x)+33075xcos(3x)
Use the examples entering the upper and lower limits of integration.