Mister Exam

Other calculators

Integral of sin^7(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 POST_GRBEK_SMALL_pi          
          /                   
         |                    
         |             7      
         |          sin (x) dx
         |                    
        /                     
        0                     
0POSTGRBEKSMALLπsin7(x)dx\int\limits_{0}^{POST_{GRBEK SMALL \pi}} \sin^{7}{\left(x \right)}\, dx
Integral(sin(x)^7, (x, 0, POST_GRBEK_SMALL_pi))
Detail solution
  1. Rewrite the integrand:

    sin7(x)=(1cos2(x))3sin(x)\sin^{7}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (1cos2(x))3sin(x)=sin(x)cos6(x)+3sin(x)cos4(x)3sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos6(x))dx=sin(x)cos6(x)dx\int \left(- \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u6du\int u^{6}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: cos7(x)7\frac{\cos^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3sin(x)cos4(x)dx=3sin(x)cos4(x)dx\int 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u4du\int u^{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 3cos5(x)5- \frac{3 \cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin(x)cos2(x))dx=3sin(x)cos2(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: cos3(x)\cos^{3}{\left(x \right)}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos7(x)73cos5(x)5+cos3(x)cos(x)\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))3sin(x)=sin(x)cos6(x)+3sin(x)cos4(x)3sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos6(x))dx=sin(x)cos6(x)dx\int \left(- \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u6du\int u^{6}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: cos7(x)7\frac{\cos^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3sin(x)cos4(x)dx=3sin(x)cos4(x)dx\int 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u4du\int u^{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 3cos5(x)5- \frac{3 \cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin(x)cos2(x))dx=3sin(x)cos2(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: cos3(x)\cos^{3}{\left(x \right)}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos7(x)73cos5(x)5+cos3(x)cos(x)\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}

  3. Add the constant of integration:

    cos7(x)73cos5(x)5+cos3(x)cos(x)+constant\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

cos7(x)73cos5(x)5+cos3(x)cos(x)+constant\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                          5         7   
 |    7                3               3*cos (x)   cos (x)
 | sin (x) dx = C + cos (x) - cos(x) - --------- + -------
 |                                         5          7   
/                                                         
cos7x73cos5x5+cos3xcosx{{\cos ^7x}\over{7}}-{{3\,\cos ^5x}\over{5}}+\cos ^3x-\cos x
The answer [src]
                                                                 5                           7                     
16      3                                                   3*cos (POST_GRBEK_SMALL_pi)   cos (POST_GRBEK_SMALL_pi)
-- + cos (POST_GRBEK_SMALL_pi) - cos(POST_GRBEK_SMALL_pi) - --------------------------- + -------------------------
35                                                                       5                            7            
cos7(POSTGRBEKSMALLπ)73cos5(POSTGRBEKSMALLπ)5+cos3(POSTGRBEKSMALLπ)cos(POSTGRBEKSMALLπ)+1635\frac{\cos^{7}{\left(POST_{GRBEK SMALL \pi} \right)}}{7} - \frac{3 \cos^{5}{\left(POST_{GRBEK SMALL \pi} \right)}}{5} + \cos^{3}{\left(POST_{GRBEK SMALL \pi} \right)} - \cos{\left(POST_{GRBEK SMALL \pi} \right)} + \frac{16}{35}
=
=
                                                                 5                           7                     
16      3                                                   3*cos (POST_GRBEK_SMALL_pi)   cos (POST_GRBEK_SMALL_pi)
-- + cos (POST_GRBEK_SMALL_pi) - cos(POST_GRBEK_SMALL_pi) - --------------------------- + -------------------------
35                                                                       5                            7            
cos7(POSTGRBEKSMALLπ)73cos5(POSTGRBEKSMALLπ)5+cos3(POSTGRBEKSMALLπ)cos(POSTGRBEKSMALLπ)+1635\frac{\cos^{7}{\left(POST_{GRBEK SMALL \pi} \right)}}{7} - \frac{3 \cos^{5}{\left(POST_{GRBEK SMALL \pi} \right)}}{5} + \cos^{3}{\left(POST_{GRBEK SMALL \pi} \right)} - \cos{\left(POST_{GRBEK SMALL \pi} \right)} + \frac{16}{35}

    Use the examples entering the upper and lower limits of integration.