Integral of 1/sqrt(x)*sqrt(1-x) dx
The solution
Detail solution
-
Let u=x.
Then let du=2xdx and substitute 2du:
∫41−u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫21−u2du=2∫1−u2du
SqrtQuadraticRule(a=1, b=0, c=-1, context=sqrt(1 - _u**2), symbol=_u)
So, the result is: u1−u2+asin(u)
Now substitute u back in:
x1−x+asin(x)
-
Add the constant of integration:
x1−x+asin(x)+constant
The answer is:
x1−x+asin(x)+constant
The answer (Indefinite)
[src]
/
|
| 1 _______ ___ _______ / ___\
| 1*-----*\/ 1 - x dx = C + \/ x *\/ 1 - x + asin\\/ x /
| ___
| \/ x
|
/
(x1−x+1)x1−x−arctan(x1−x)
The graph
Use the examples entering the upper and lower limits of integration.