Mister Exam

Other calculators


1/sqrt(x)*sqrt(1-x)

Integral of 1/sqrt(x)*sqrt(1-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |      1     _______   
 |  1*-----*\/ 1 - x  dx
 |      ___             
 |    \/ x              
 |                      
/                       
0                       
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{x}} \sqrt{- x + 1}\, dx$$
Integral(1*sqrt(1 - x)/sqrt(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

        SqrtQuadraticRule(a=1, b=0, c=-1, context=sqrt(1 - _u**2), symbol=_u)

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                                         
 |     1     _______            ___   _______       /  ___\
 | 1*-----*\/ 1 - x  dx = C + \/ x *\/ 1 - x  + asin\\/ x /
 |     ___                                                 
 |   \/ x                                                  
 |                                                         
/                                                          
$${{\sqrt{1-x}}\over{\left({{1-x}\over{x}}+1\right)\,\sqrt{x}}}- \arctan \left({{\sqrt{1-x}}\over{\sqrt{x}}}\right)$$
The graph
The answer [src]
pi
--
2 
$${{\pi}\over{2}}$$
=
=
pi
--
2 
$$\frac{\pi}{2}$$
Numerical answer [src]
1.57079632626431
1.57079632626431
The graph
Integral of 1/sqrt(x)*sqrt(1-x) dx

    Use the examples entering the upper and lower limits of integration.