Mister Exam

Other calculators


1/sqrt(x)*sqrt(1-x)

Integral of 1/sqrt(x)*sqrt(1-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |      1     _______   
 |  1*-----*\/ 1 - x  dx
 |      ___             
 |    \/ x              
 |                      
/                       
0                       
0111xx+1dx\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{x}} \sqrt{- x + 1}\, dx
Integral(1*sqrt(1 - x)/sqrt(x), (x, 0, 1))
Detail solution
  1. Let u=xu = \sqrt{x}.

    Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

    41u2du\int 4 \sqrt{1 - u^{2}}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      21u2du=21u2du\int 2 \sqrt{1 - u^{2}}\, du = 2 \int \sqrt{1 - u^{2}}\, du

        SqrtQuadraticRule(a=1, b=0, c=-1, context=sqrt(1 - _u**2), symbol=_u)

      So, the result is: u1u2+asin(u)u \sqrt{1 - u^{2}} + \operatorname{asin}{\left(u \right)}

    Now substitute uu back in:

    x1x+asin(x)\sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}

  2. Add the constant of integration:

    x1x+asin(x)+constant\sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}+ \mathrm{constant}


The answer is:

x1x+asin(x)+constant\sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                        
 |                                                         
 |     1     _______            ___   _______       /  ___\
 | 1*-----*\/ 1 - x  dx = C + \/ x *\/ 1 - x  + asin\\/ x /
 |     ___                                                 
 |   \/ x                                                  
 |                                                         
/                                                          
1x(1xx+1)xarctan(1xx){{\sqrt{1-x}}\over{\left({{1-x}\over{x}}+1\right)\,\sqrt{x}}}- \arctan \left({{\sqrt{1-x}}\over{\sqrt{x}}}\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.900200
The answer [src]
pi
--
2 
π2{{\pi}\over{2}}
=
=
pi
--
2 
π2\frac{\pi}{2}
Numerical answer [src]
1.57079632626431
1.57079632626431
The graph
Integral of 1/sqrt(x)*sqrt(1-x) dx

    Use the examples entering the upper and lower limits of integration.