Mister Exam

Other calculators


Sin^5x*cos^5x

Integral of Sin^5x*cos^5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     5       5      
 |  sin (x)*cos (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin^{5}{\left(x \right)} \cos^{5}{\left(x \right)}\, dx$$
Integral(sin(x)^5*cos(x)^5, (x, 0, 1))
The graph
The answer [src]
     8         6         10   
  sin (1)   sin (1)   sin  (1)
- ------- + ------- + --------
     4         6         10   
$${{6\,\sin ^{10}1-15\,\sin ^81+10\,\sin ^61}\over{60}}$$
=
=
     8         6         10   
  sin (1)   sin (1)   sin  (1)
- ------- + ------- + --------
     4         6         10   
$$- \frac{\sin^{8}{\left(1 \right)}}{4} + \frac{\sin^{10}{\left(1 \right)}}{10} + \frac{\sin^{6}{\left(1 \right)}}{6}$$
Numerical answer [src]
0.0141239256012734
0.0141239256012734
The graph
Integral of Sin^5x*cos^5x dx

    Use the examples entering the upper and lower limits of integration.