Integral of cos^2x/sin^7x dx
The solution
The answer (Indefinite)
[src]
/
|
| 2 3 5
| cos (x) log(-1 + cos(x)) log(1 + cos(x)) - 8*cos (x) - 3*cos(x) + 3*cos (x)
| ------- dx = C - ---------------- + --------------- - --------------------------------------------
| 7 32 32 4 6 2
| sin (x) -48 - 144*cos (x) + 48*cos (x) + 144*cos (x)
|
/
∫sin7(x)cos2(x)dx=C−48cos6(x)−144cos4(x)+144cos2(x)−483cos5(x)−8cos3(x)−3cos(x)−32log(cos(x)−1)+32log(cos(x)+1)
The graph
∞−32iπ
=
∞−32iπ
Use the examples entering the upper and lower limits of integration.